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ПРЕДГОВОР 
 
Помагалото се фокусира върху знанията, необходими за успешното решаване на олимпиадните 
задачи. Разделено е на 21 глави, всяка от които съдържа обзор на съответната теория, примери 
за упражнение и решени задачи с илюстративен характер. След всяка от главите са представени 
задачи от олимпиади или сборници, изискващи знания не само от съответната глава, а и от 
предхождащите я. За повечето от задачите е посочен източник, като са използвани следните 
означения: 

- НАО – Национална олимпиада по астрономия; 
- IAO – Международна олимпиада по астрономия; 
- IOAA – Международна олимпиада по астрономия и астрофизика; 
- РАО – Всерусийска олимпиада по астрономия; 
- СПбАО – Санкт-Петербургска олимпиада по астрономия; 
- МосАО – Московска олимпиада по астрономия; 
- I, II, III, IV, V – кръг на олимпиадата, ако такъв има; 
- 7, ... , 12 – клас(ове), на които е дадена задачата, ако такива има; 
- α, β, αβ – възрастови групи, на които е дадена задачата (младша/старша/и двете), ако 

такива има. 
Всички задачи, за които източникът не е указан, са снабдени с подробни решения. Решенията на 
останалите задачи могат да бъдат намерени на български, английски или руски език в архива с 
олимпиади тук: bit.ly/2Go7XJL 

 
Помагалото е на практика достъпно за всички ученици, завършили 7-ми клас, като се 
предполагат общи познания за планетите, планетите джуджета и големите спътници в 
Слънчевата система, за звездните купове, мъглявините, галактиките и така нататък. Въпреки 
това, повечето задачи са с висока трудност, като най-сложните задачи и теория са означени с *. 
 
Ще се радваме да съобщите за грешки и неточности (такива вероятно има много!) или да 
дадете предложения на адрес sivanov.mail(at)yandex.com.  
 
Благодарности за проверка на помагалото и за допринасяне на задачи: 

Захари Дончев  /  Светла Цекова  /  Зорница Белчева  /  Никола Каравасилев 
 

ЛИТЕРАТУРА И ДР. 
 
Учебници по астрономия с по-обща насоченост: 
В. Голев, Астрономия за 11 клас, Просвета, 2004 г. 
Э. Кононович, В. Мороз, Общий курс астрономии, URSS, 2004 г. (на руски език) 
 
Задачи по астрономия за упражнение може да намерите в: 
В. Сурдин, Астрономические олимпиады, МГУ, 1995 г. (на руски език) 
 
От участниците в IOAA се очаква значителна подготовка по физика, за което препоръчваме: 
М. Максимов, Основи на физиката (част I и част II), Булвест 2000, 2000 г. 
 
Труден сборник, отново за участниците в IOAA: 
Д. Мартынов, В. Липунов, Сборник задач по астрофизике, Наука, 1986 г. (на руски език) 
 
Изключително полезен софтуер откъм подготовка за наблюдателни задачи: 
Stellarium, stellarium.org 
 
Някои от горепосочените могат да бъдат намерени в архива тук: bit.ly/2DEVcZr 



 

1. МАТЕМАТИКА 
 

преговор 

 

Припомняме някои математически факти.  

- Окръжност с радиус 𝑅 има периметър 𝑃 = 2𝜋𝑅. Лицето на кръга, съответстващ на тази 

окръжност, е 𝑆 = 𝜋𝑅2.  

- Ако сфера има радиус 𝑅, повърхнината й е 𝑆 = 4𝜋𝑅2, а обемът на съответното й кълбо е 

𝑉 =
4

3
𝜋𝑅3. 

- Ако 𝑎 и 𝑏 са катети, а 𝑐 е хипотенуза на правоъгълен триъгълник, то според питагоровата 

теорема е изпълнено равенството 𝑎2 + 𝑏2 = 𝑐2. 

- Квадратен корен от число 𝑎 е такова число 𝑦, че 𝑦2 = 𝑎. Всяко неотрицателно число 𝑎 

има един неотрицателен квадратен корен, който се бележи с √𝑎. Двата квадратни 

корена на 𝑎 са √𝑎 и −√𝑎. В практиката в почти всички случаи под “квадратен корен от 𝑎” 

се има предвид само √𝑎. 

- По аналогия с квадратния корен, 𝑛-ти корен на число 𝑎 е такова число 𝑦, че 𝑦𝑛 = 𝑎. 

Съответното означение е √𝑎
𝑛

. Счита се, че коренуването представлява форма на 

степенуване, като √𝑎
𝑛

⇔ 𝑎1/𝑛 (тук “⇔” показва еквивалентност). 

 

вектори 

 

Вектор 𝐴𝐵⃗⃗⃗⃗  ⃗ представлява насочена отсечка с начало 𝐴 и край 𝐵. Всеки вектор се характеризира с 

големина и посока (големината на вектор 𝑎  обикновено бележим с |𝑎 |). Зад това стои 

разделението на скаларни величини и векторни величини. Векторни величини са тези, които 

се характеризират с посока, напр. скоростта, а скаларни са тези, които нямат конкретна 

насоченост, напр. площта. Както и със скаларните величини, така и с векторните величини могат 

да се извършват операции като събиране, изваждане и умножение. Начинът на извършването 

на операциите, обаче, е различен в двата случая. 

 

Векторният сбор на двата вектора 𝐴𝐵⃗⃗⃗⃗  ⃗ и 𝐶𝐷⃗⃗⃗⃗  ⃗ на чертежа е векторът 𝐴𝐸⃗⃗⃗⃗  ⃗, 

получен при пренасянето (транслацията) на 𝐶𝐷⃗⃗⃗⃗  ⃗, така че 𝐶 да съвпада с 

𝐵, и съединяването на началната и крайната точка от така получената 

верижка от два вектора. Вектор като 𝐴𝐸⃗⃗⃗⃗  ⃗ може да получим и чрез 

транслация на 𝐴𝐵⃗⃗⃗⃗  ⃗, такава, че 𝐴 да съвпада с 𝐷, след което съединим 

двата края на получената верижка. Това показва, че 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗ = 𝐶𝐷⃗⃗⃗⃗  ⃗ +

𝐴𝐵⃗⃗⃗⃗  ⃗. 

 

По показания метод може да събираме не само два, а и какъв да е 

брой вектори (правим верижка от няколко вектора). Обръщаме 

внимание, че |𝐴𝐵⃗⃗⃗⃗  ⃗| + |𝐶𝐷⃗⃗⃗⃗  ⃗| ≠ |𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐶𝐷⃗⃗⃗⃗  ⃗|. Това е една от разликите при 

работа с векторни и скаларни величини. 

• Съберете 𝐾𝐿⃗⃗⃗⃗  ⃗, 𝑀𝑁⃗⃗⃗⃗⃗⃗  ⃗и 𝑂𝑃⃗⃗⃗⃗  ⃗ на дадения чертеж. 



 

Противоположен вектор на вектор 𝑎  представлява друг вектор с противоположна посока и 

равна големина на 𝑎 . Противоположният на 𝑎  вектор бележим с −𝑎 .  

Векторната разлика 𝑎 − 𝑏⃗  на практика се явява векторен сбор на 𝑎  и −𝑏⃗ . 

• Знаейки това, постройте на чертежа разликата 𝐾𝐿⃗⃗⃗⃗  ⃗ − 𝑃𝑂⃗⃗⃗⃗  ⃗. 

 

елипса 

 

Избираме две произволни точки в равнината 𝐹1 и 𝐹2. Елипса наричаме геометричното място на 

точки (⇔ множеството от точки), за които сборът от разстоянията до 𝐹1 и 𝐹2 е равен на едно и 

също определено число. Точките 𝐹1 и 𝐹2 наричаме фокуси на елипсата. 

Най-голямото възможно разстояние между две точки върху елипса е т.нар. голяма ос на тази 

елипса. Върху нея лежат двата фокуса. В средата на голямата ос стои центърът на елипсата (𝑂 на 

чертежа). Разстоянието от фокус до център за дадена елипса бележим с 𝑓 и наричаме фокусно 

разстояние.  Най-малкото разстояние между две точки върху елипса, разположени симетрично 

спрямо центъра, се нарича малка ос. Малката ос е перпендикулярна на голямата. Занапред ще 

работим основно с параметрите голяма полуос 𝑎 и малка полуос 𝑏.  

 

За всяка елипса е изпълнено, че разстоянието между фокус и пресечна точка на малката ос с 

елипсата е равно на голямата полуос 𝑎. Тогава от дефиницията за елипса следва 𝑎 + 𝑎 = 𝑐𝑜𝑛𝑠𝑡, 

т.е. за всяка точка от елипса сборът от разстоянията до фокусите е равен на 2𝑎. По чертежа 

прилагаме питагорова теорема: 

𝑏2 + 𝑓2 = 𝑎2 

𝑓 = √𝑎2 − 𝑏2 

За дадено 𝑎 съществуват всякакви различно „разтеглени” елипси. По-разтеглените елипси имат 

по-малко 𝑏 и съответно по-голямо 𝑓. За характеризиране на разтеглеността на елипсата е 

въведена безразмерната величина ексцентрицитет 𝑒, за която е дефинирано, че  

𝑒 =
𝑓

𝑎
 ,   𝑒 ∈ [0; 1] 

Когато 𝑒 = 0, елипсата не е сплесната въобще и съответно е окръжност. Когато 𝑒 = 1, елипсата 

е дотолкова разтеглена, че се изражда в отсечка. От известните вече зависимости: 

𝑒𝑎 = 𝑓 = √𝑎2 − 𝑏2 

𝑒2𝑎2 = 𝑎2 − 𝑏2 



 

𝑒2 = 1 −
𝑏2

𝑎2
 

Така получаваме за ексцентрицитета 𝑒 = √1 −
𝑏2

𝑎2
. 

Лицето на елипса с голяма и малка полуос 𝑎 и 𝑏 е 𝑆 = 𝜋𝑎𝑏. 

 

Пътищата, по които телата се движат около Слънцето в пространството, се наричат орбити. Те са 

елипси, които обикновено имат много малък ексцентрицитет (но не непременно). 

 

радиан 

 

Радианът [rad], както градуса, е мерна единица за ъгъл. Да разгледаме 

единична окръжност – окръжност с радиус 1. В нея дъга с дължина 1 

съответсва на ъгъл, равен на 1 rad. Изобщо, ако дъга по единичната 

окръжност има дължина 𝑙, съответният й ъгъл е 𝑙 rad. 

• На колко градуса е равен един радиан? 

• Изразете в радиани ъгли с мярка 360°, 180°, 90° и 30°. 

Ако имаме окръжност с радиус 𝑅 и дъга от нея със съответен ъгъл 𝛿 rad, 

дължината на дъгата е 𝛿𝑅. 

• Обяснете този факт. 

 

тригонометрия 

 

Ако в правоъгълен триъгълник е известен един от двата остри ъгъла, то на практика са известни 

всичките ъгли на триъгълника и съответно формата му е определена. На избран остър ъгъл в 

правоъгълен триъгълник съответства конкретна форма на триъгълника, тоест конкретни 

отношения на дължините на страните. Функциите, които съотнасят ъгъл с отношения на 

страните, се наричат тригонометрични функции. 

В правоъгълен триъгълник синус на ъгъл се нарича отношението на дължината на 

срещулежащия на ъгъла катет към дължината на хипотенузата, т.е. на чертежа: 

sin 𝛼 =
𝑎

𝑐
    и    sin 𝛽 =

𝑏

𝑐
 

Известно е, че в правоъгълен тригълник с ъгъл 30° катетът срещу въпросния ъгъл е два пъти по-

малък от хипотенузата – с други думи, sin 30° =
1

2
. Сега нека в равнобедрен правоъгълен 

триъгълник означим катетите с 𝑥. Дължината на хипотенузата е √𝑥2 + 𝑥2 = √2𝑥. Ъглите в 

триъгълника са 45°, 45° и 90°. Затова sin 45° =
𝑥

√2𝑥
. Така показахме, че sin 45° =

√2

2
.  

Да си представим, че постепенно постепенно увеличаваме единия остър ъгъл в правоъгълен 

триъгълник до 90°. С това ще се увеличава и синусът на ъгъла, докато накрая срещулежащият 



 

катет не се изравни с хипотенузата. От това е видно, че sin 90° = 1. По аналогични съображения 

sin 0° = 0. 

• На колко е равен sin 60°? 

За правоъгълен триъгълник косинус на ъгъл е отношението на дължината на прилежащия на 

ъгъла катет към дължината на хипотенузата, т.е. на чертежа: 

cos 𝛼 =
𝑏

𝑐
    и    cos 𝛽 =

𝑎

𝑐
   

• Намерете cos 0°, cos 30°, cos 45°, cos 60°, cos 90°. 

Тангенс на ъгъл в правоъгълен триъгълник е отношението на дължината на срещулежащия на 

ъгъла катет към дължината на прилежащия на ъгъла катет, т.е. на чертежа 

tg 𝛼 =
𝑎

𝑏
        tg 𝛽 =

𝑏

𝑎
  

Това означава, че за ъгъл 𝛾 е изпълнено tg 𝛾 =
sin𝛾

cos𝛾
. В равнобедрен правоъгълен триъгълник 

двата катета са равни, така че tg 45° = 1. До същия резултат се достига и чрез tg 45° =
sin45°

cos45°
=

√2/2

√2/2
= 1. 

• Изчислете tg 0°, tg 30°, tg 60°. 

Изразът tan 90° няма смисъл, тъй като tan 90° =
sin45°

cos45°
=

1

0
, в което има деление на нула. Все пак 

може да се каже, че ако ъгъл “клони към 90°”, тангенсът му “клони към +∞”. 

 

За ъгли от 0° до 90° интервалът от стойности, които може да приема всяка от трите 

тригонометрични функции, изложени тук, е [0; 1] за синус, [0; 1] за косинус и [0; +∞) за тангенс. 

 

Един начин за оценка на стойностите на тригонометрични функции на ръка е с начертаване на 

правоъгълен триъгълник с дадени ъгли (транспортир) и измерване на търсеното отношение на 

страните (линия). Разбира се, по-надеждни са калкулаторите с вградени стойности на 

тригонометрични функции за произволен ъгъл. 

 

Тригонометричните функции са дефинирани не само за ъглите от 0° 

до 90°, а за всякакви ъгли. За тази тяхна дефиниция използваме 

единичната окръжност (припомняме, тя представлява окръжност с 

радиус 1). Да разгледаме “подвижен радиус” 𝑂𝐴 върху единичната 

окръжност , който тръгва от Ox и се движи обратно на часовниковата 

стрелка (тоест “в положителна посока”). Нека този радиус се е 

придвижил на ъгъл 𝜃 ≤ 90° (вж. чертежа). Ако от точката 𝐴 спуснем 

перпендикуляр 𝐴𝐵 към Ox, то cos 𝜃 =
𝑂𝐵

𝑂𝐴
, cos 𝜃 =

𝑂𝐵

1
, cos 𝜃 = 𝑂𝐵. По 

аналогия sin 𝜃 = 𝑂𝐶. Съкращаването с единица прави използването 

на единичната окръжност удобно.  

 

Нека сега 𝜃 надвишава 90°. Тогава отново sin и cos са съответно 𝑦- и 𝑥- координатите на петите 

на перпендикулярите от 𝐴 към Oy и Ox. Това е дефиницията на синус и косинус за произволен 

ъгъл. Ако подвижният радиус 𝑂𝐴 се е завъртял на 𝜃 = 440°, той ще се намира на същото 

положение, както ако се беше завъртял на 440° − 360° = 80°. Затова sin 440° = sin 80° и 

cos 440° = cos 80°. По-общо, sin(360°𝑘 + 𝑥) = sin 𝑥 и cos(360°𝑘 + 𝑥) = cos 𝑥, където 𝑘 е цяло 

число. Казва се, че синусът и косинусът са периодични функции с период 360° (или 2𝜋 rad). 



 

• Докажете, че за произволен ъгъл 𝛼 са верни тъждествата sin(90° − 𝛼) = cos𝛼, 

cos(90° − 𝛼) = sin 𝛼, sin(180° − 𝛼) = sin 𝛼 и cos(180° − 𝛼) = −cos 𝛼. 

• Докажете, че за какъв да е ъгъл 𝑥 е вярно sin2 𝑥 + cos2 𝑥 = 1 (с sin2 𝑥 и cos2 𝑥 се бележи 

(sin 𝑥)2 и (cos 𝑥)2, а не sin(sin 𝑥) и cos(cos 𝑥)). 

• Определете интервала от стойности, които може да приемат функциите синус, косинус и 

тангенс за всякакви ъгли. 

Други важни формули: 

sin(𝛼 ± 𝛽) = sin 𝛼 cos 𝛽 ± cos 𝛼 sin 𝛽 

cos(𝛼 ± 𝛽) = cos 𝛼 cos 𝛽 ∓ sin 𝛼 sin 𝛽 

• Покажете, че: 

sin(2𝛼) = 2 sin 𝛼 cos 𝛼 

cos(2α) = cos2 𝛼 − sin2 𝛼 

 

обратни тригонометрични функции 

 

Както ако имаме ъгъл, можем да намерим синуса му, така и ако имаме синуса му, можем да 

намерим ъгъла. Намирането на ъгъл по дадено отношение на страни става с обратни 

тригонометрични функции, например аркуссинус (arcsin), аркускосинус (arccos) и 

аркустангенс (arctg). Например, arcsin 0,5 = 30°, защото sin(30° + 360°𝑘) = 0,5. Аналогично, 

arccos
√3

2
= 30°, защото cos(30° + 360°𝑘) =

√3

2
. За да няма многозначност, 

аркуссинус/аркустангенс от някакво отношение може да приема стойности от −90° до 90° а 

аркускосинус от някакво отношение може да има стойности от 0° до 180°. 

 

графики на тригонометрични функции 

 

Графиката на функцията синус (или на 

функцията косинус) има характерна форма Тя 

се нарича синусоида и е показана вдясно. 

Видът на графиката на тангенса е даден по-

долу. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

синусова и косинусова теорема 

 

Знаейки трите ъгъла на триъгълник, може да определим формата му, независимо от това дали 

той е правоъгълен или не. С тригонометрия е възможно да намерим отношенията на страните 

на всеки триъгълник с известни ъгли 𝛼, 𝛽, 𝛾. Това става с две теореми. Занапред ще използваме 

означенията на чертежа. По синусовата теорема: 

𝑎

sin 𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 𝛾
 

Според косинусовата теорема: 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝛼 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝛽 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾 

• Какво се получава в частен случай на косинусовата теорема, за който ъгълът, влизащ в 

равенството, е 90°? 

• Опитайте се да докажете синусовата теорема.  

• Опитайте се да докажете косинусовата теорема.  

Едно от многото приложения на двете теореми е свързано с намирането на големините на 

векторните сборове и разлики, за които говорихме по-рано.  

 

логаритми 

 

Логаритмуването (не коренуването!) е обратното действие на степенуването; Логаритъмът на 

число е степента, на която дадена стойност (т. нар. основа на логаритъма) трябва да се 

повдигне, за да е равна на това число. Например, логаритъм с основа 8 от 512 е равен на 3, 

защото 83 = 512.  

Обобщено, логаритъмът на 𝑥 при основа 𝑏 (озн. log𝑏 𝑥) е числото 𝑦, такова, че 𝑏𝑦 = 𝑥. На 

практика най-често се използват логаритмите с основа 10 (десетичен) и 𝑒 (натурален). 

Натуралният логаритъм е с основа 𝑒, където 𝑒 = 2,7182…  е т.нар. неперово число – стойността, 

към която клони изразът (1 +
1

𝑛
)
𝑛

, когато 𝑛 клони към безкрайност. За десетичния логаритъм се 

ползва като запис lg 𝑥 вместо log10 𝑥, а за натуралния се употребява ln 𝑥 вместо log𝑒 𝑥. 

Ето някои свойства на логаритмите: 

log𝑏(1) = 0 

log𝑏(𝑏) = 1 

𝑏log𝑏(𝑥) = 𝑥 

log𝑏(𝑏
𝑥) = 𝑥 

• Докажете показаните по-долу свойства на логаритмите. Използвайте за целта 

съответните свойства на степените (напр. 𝑎𝑥 × 𝑎𝑦 = 𝑎𝑥+𝑦). 

log𝑏(𝑥𝑦) =  log𝑏(𝑥) + log𝑏(𝑦) 



 

log𝑏 (
𝑥

𝑦
) = log𝑏(𝑥) − log𝑏(𝑦) 

log𝑏(𝑥
𝑑) = 𝑑 log𝑏(𝑥) 

log𝑏(√𝑥
𝑦

) =
log𝑏(𝑥)

𝑦
 

Остана да споменем и правилото за смяна на основата, според което log𝑏 𝑎 =
log𝑑 𝑎

log𝑑 𝑏
. 

 

биномно приближение 

 

За всяко близко до 0 реално число 𝑥 може да запишем (1 + 𝑥)𝑛 ≈ 1 + 𝑛𝑥, като колкото повече 

𝑥 се доближава до нулата, толкова по-точно е приближението. То намира приложение в 

опростяването на големи изрази, които ще срещнем по-нататък. 

 

ЗАДАЧИ 

 

Задача 1. Венера. Максималният ъгъл, на който Венера може да се отдалечи от Слънцето, 

гледано от земен наблюдател, е 46°. Определете радиуса на орбитата на Венера. На колко е 

равен този ъгъл за Меркурий, чийто радиус на орбитата е 0,3 AU? 

Упътване: С AU бележим т.нар. астрономическа единица; 1 AU по дефиниция е голямата 

полуос на земната орбита, която е почти кръгова) 

 

Задача 2. Разстояния до Марс. Когато Марс се намира на 90° от Слънцето на небето за земен 

наблюдател, разстоянието от Земята до него е 1,118 AU. А колко е разстоянието от Земята до 

Марс, когато той се намира на 42° от Слънцето за земен наблюдател? Орбитите на Земята и 

Марс приемете за кръгови. 

 

Задача 3. Комета. Открита е комета по елиптична орбита, имаща голяма полуос 2 AU. Известно 

е, че Слънцето се намира във фокуса на кометната орбита. Когато кометата е най-близо до 

Слънцето, отсечката помежду им има големина 1,1 AU. Нека в някакъв момент Земята се 

намира на мястото, където въпросната отсечка пресича земната орбита. В този момент 

разстоянията Земя-комета и Слънце-комета са равни. А на колко AU са равни точно? 

Упътване: Уравнението на елипса в правоъгълна координатна система, центърът на която 

съвпада с центъра на елипсата, е  (
𝑥

𝑎
)
2

+ (
𝑦

𝑏
)
2

= 1, където 𝑎 и 𝑏 са голямата и малката 

полуос, а 𝑥 и 𝑦 са координатите по двете оси на системата (вж. чертежа).  

 

 

 



2. ЕЛЕМЕНТИ ОТ МЕХАНИКАТА – 1 
 
кинематика 
 

Ако за дадено време 𝑡 се изминава път 𝑠, то средната скорост за това време е 𝑣avg =
𝑠

𝑡
. 

• Пътуваме едната половина от дадено разстояние със скорост 𝑣1, а другата със скорост 𝑣2. 
Колко е средната скорост за времето на пътуване? 

Скоростта за време 𝑡, обаче, може да не е постоянна във всички моменти от време. Ще 
разгледаме частния случай, в който скоростта се изменя линейно, т.е. графиката 𝑣(𝑡) (скорост в 
зависимост от времето) е права: 

 
Предварително ще споменем, че символът “Δ” се 
използва за означаване на разлика. Ако за 
някакво движение вземем два произволни 
момента от време 𝑡𝑎, 𝑡𝑏 и съответстващите им 

скорости 𝑣𝑎 и 𝑣𝑏, величината 
𝑣𝑏−𝑣𝑎

𝑡𝑏−𝑡𝑎
 за по-кратко 

може да се запише като 
𝛥𝑣

𝛥𝑡
. 

 
 

Тъй като разглежданата от нас графика е права, за нея 
𝛥𝑣

𝛥𝑡
 е константа. Тази величина е по 

същество изменението на скоростта за единица време. Тя се нарича ускорение и обичайно се 
бележи с 𝑎. Движението на графиката става с постоянно ускорение и затова то се нарича 
равнопроменливо (за равни интервали от време стават еднакви промени в скоростта). 
Равнопроменливото движение може да бъде равноускорително (𝑎 > 0, както на графиката) 
или равнозакъснително (𝑎 < 0). 
 
При равнопроменливо движение скоростта в момент от време 𝑡1 след началото на движението 
може да се запише като 𝑣 = 𝑣0 + 𝑎𝑡1, където 𝑣0 е начална скорост, а 𝑎 е ускорение. Това идва 

от 𝑎 =
𝑣−𝑣0

𝑡1−0
. 

Пътят 𝑠, изминат от 𝑡 = 0 до 𝑡 = 𝑡1, се дава с формулата 𝑠 = 𝑣0𝑡1 +
𝑎𝑡1

2

2
. 

Земята действа на телата с т. нар. земно ускорение 𝑔. Когато на Земята пуснем тяло от някаква 
малка височина, то ще пада към земната повърхност с постоянно ускорение 𝑎 = 𝑔. Стойността 
на 𝑔 на земната повърхност е 9,81 m/s2. 

• Хвърляме от земята тяло право нагоре с начална скорост 𝑣0. След какво време 𝑡g ще се 

върне то обратно на земята? 
 
принципи на механиката 
 
Исак Нютон обобщава следните три принципа: 

1) Всяко тяло запазва състоянието си на покой или на праволинейно равномерно 
движение, докато външно въздействие (т.е. сила) не го изведе от това състояние.  

2) Ускорението 𝑎, с което се движи тяло, масата му 𝑚 и равнодействащата сила 𝐹, която му 
действа, са свързани с равенството 𝐹 = 𝑚𝑎. 

В покой или при равномерно праволинейно движение имаме 𝑎 = 0, а тогава 𝐹 = 0, което 
препраща към първия принцип. Вторият принцип е валиден, например, и за нас и Земята, при 
което силата, с която Земята ни привлича (сила на тежестта), се задава с 𝐺 = 𝑚𝑔. 

• Парашутист с маса 𝑚 се спуска с постоянна скорост. Намерете силата на съпротивление 
на въздуха, която му действа. 



3) Ако едно тяло действа на друго със сила, то винаги второто тяло противодейства на 
първото с равна по големина и противоположна по посока сила. 

Това се илюстрира от факта, че ако ударим предмет силно, той навярно ще се счупи, но и нас ще 
ни заболи ръката – противодействието на нашето действие. 
 
работа и енергия 
 
Физичната величина работа се дефинира като 𝐴 = 𝐹𝑠 cos 𝜃, където 𝜃 е ъгълът между посоката 
на движение на тяло и направлението на вектора на действащата му сила. От вида на 
формулата е ясно, че величината работа може да има и отрицателна стойност. Тя се измерва в 
джаули (J), също както и физичната величина енергия – способността на телата да вършат 
работа.  
 
Движещите се тела имат енергия на движението, наричана още кинетична енергия. 
Кинетичната енергия за тяло с маса 𝑚 и скорост 𝑣 е работата, нужна за ускоряването на тялото 

от скорост 0 до скорост 𝑣. Определя се с 𝐸𝐾 =
𝑚𝑣2

2
. Телата имат също и т.нар. гравитационна 

потенциална енергия, която обаче е относителна величина. Стойността й зависи от това къде 
ще приемем, че е равна на нула – тоест къде е т.нар. нулево ниво. За нулево ниво често се 
взима земната повърхност. Гравитационната потенциална енергия по дефиниция е работата, 
нужна за преместване на тялото от нулевото ниво до разстояние ℎ от него. Стойността й за 
височини, много по-малки от земните размери, е 𝐸𝑃 = 𝐺ℎ = 𝑚𝑔ℎ. Сборът на кинетична и 
потенциална енергия се нарича механична енергия 𝐸 = 𝐸𝐾 + 𝐸𝑃. 
 
В затворена система 𝐸 = 𝑐𝑜𝑛𝑠𝑡 (наричаме това закон за запазване на енергията или ЗЗЕ). Под 
затворена система тук се разбира такава, в която не действат външни сили. Система, състояща 
се само от едно трупче, което се движи с триене по земната повърхност, не е затворена и не 
може да запишем ЗЗЕ за трупчето, защото земната повърхност му действа с външна сила – 
силата на триене; за система, състояща се от летящо във въздуха трупче, можем да запишем 
ЗЗЕ, не отчитайки съпротивлението на въздуха, което се явява външна сила и би попречило на 
това. Разбира се, на помощ идва интуитивният факт, че изменението в механичната енергия за 
даден период е равно на работата на външните сили за периода. Отделно от това, изменението 
на кинетичната енергия представлява работата на всички сили. 

• От неподвижен вертолет на височина ℎ = 50 m е пуснат контейнер с маса 𝑚 = 100 kg. 
Контейнерът достига земната повърхност със скорост 𝑣 = 20 m/s. Колко джаула е 
работата 𝐴 на силата на съпротивление на въздуха? 

 
импулс 
 
Импулсът 𝑝 на дадено тяло е произведението на масата и скоростта му, т.е. 𝑝 = 𝑚𝑣. Също като 
скоростта и силите, импулсът е векторна величина. Чрез него можем да достигнем и до още 

едно определение за сила: 𝐹 = 𝑚𝑎 =
𝑚𝛥𝑣

𝛥𝑡
=

𝛥𝑝

𝛥𝑡
. Физическият смисъл на това е, че за да спрем 

движението на тяло с по-голям импулс, ще е нужна по-голяма сила (по-трудно е да спрем голям 
камък, движещ се бързо към нас, отколкото хартиено топче, движещо се със същата скорост, 
или същия камък, движещ се бавно). Както и механичната енергия, импулсът е консервативна 
величина, тоест се запазва в затворена система. Но той, за разлика от енергията, е векторна 
величина и това, което се запазва, е векторният сбор на импулсите в системата, а не 
алгебричният такъв. Този факт е полезен, когато изследваме удари между телата. При 
прилагане на закона за запазване на импулса (ЗЗИ) трябва да се избере положителна посока. 
Скоростите, насочени по нея, считаме за положителни, а тези, насочени обратно на нея, са 
отрицателни. 
 



Задача 1. Удар. Две трупчета с маси 𝑚 и скорости 𝑣0 и 0 по идеално гладка (⇔ няма триене) 
хоризонтална повърхност се сблъскват едно срещу друго в равнината. Приемайки удара им за 
идеално еластичен (удар, при който пълната механична енергия на системата се запазва), 
пресметнете скоростите им след сблъсъка, съответно 𝑣1 и 𝑣2. 
 
Решение: 
Записваме ЗЗЕ и ЗЗИ: 

𝑚𝑣0
2

2
+ 0 =

𝑚𝑣1
2

2
+

𝑚𝑣2
2

2
 

𝑚𝑣0 + 0 = 𝑚𝑣1 + 𝑚𝑣2 
Тук потенциалната енергия не търпи променя, затова в ЗЗЕ я пропускаме от двете страни на 
равенството. Замествайки 𝑣0 от ЗЗИ в ЗЗЕ, получаваме 𝑚𝑣1𝑣2 = 0. Няма как неподвижното 
преди удара трупче да остане неподвижно, при което 𝑣1 = 0 и 𝑣2 = 𝑣0, скоростта се пренася от 
едното трупче на другото. На практика ударите рядко са идеално еластични и при тях се отделя 
енергия, например под формата на топлина. ∎ 
 
закон на Нютон 
 
Земното ускорение не е равно на, примерно, лунното такова. Гравитационното ускорение, 
създавано от някакво тяло с маса 𝑀, е равно на  

𝑔 =
𝛾𝑀

𝑟2
 

Тук 𝑟 е разстоянието до това тяло, а 𝛾 e т.нар. гравитационна константа, 𝛾 ≈ 6,67 × 10−11 m3 ∙
kg−1 ∙ s−2. 

• Ако приемем Земята за сфера с радиус 𝑅 = 6371 km, намерете нейната маса. 

• Масата на Луната е 7,342 × 1022 kg, а радиусът й е 1737 km (приемаме я за сфера). 
Колко пъти по-голямо е гравитационното ускорение на Земята, отколкото на Луната?  

Гравитационната сила може да се изрази с 𝐹 = 𝑚𝑎, където ще изберем 𝑎 = 𝑔. Тогава 

𝐹 =
𝛾𝑀𝑚

𝑟2
 

Това наричаме закон на Нютон. Както следва от третия принцип на механиката, силата, с която 
тялото с маса 𝑚 привлича тялото с маса 𝑀, е равна на тази, с която тялото с маса 𝑀 привлича 

тялото с маса 𝑚 (от една страна 𝐹 = 𝑚 ×
𝛾𝑀

𝑟2 , а от друга 𝐹 = 𝑀 ×
𝛾𝑚

𝑟2 ). 

 
две теореми 
 
Нютон доказва, че: 

1) Еднородна тънка черупка с дадена маса действа гравитационно на външни за нея обекти 
така, както точка със същата маса, намираща се в центъра на черупката. Казаното е вярно 
и за всяко сферично симетрично тяло, тъй като то може да се разложи на еднородни 
черупки. 

2) Еднородна тънка черупка с дадена маса не действа гравитационно на вътрешни за нея 
обекти, независимо от точното им местоположение в нея. Затова ако бяхме някъде вътре 
в Земята, при пресмятане на дейстащата ни гравитационна сила щяхме да се 
интересуваме единствено от сферична област от Земята, имаща за радиус разстоянието 
между нас и земния център. 

 
друг поглед пърху ЗЗЕ 
 
Припомняме, че начинът за извеждане на формулата за потенциална енергия, който 
разглеждахме досега, използва 𝑔 = 𝑐𝑜𝑛𝑠𝑡. Но това е вярно само в приближение. С цел да 
изведем формула за 𝐸𝑃, отчитаща промяната в 𝑔 с промяната на разстоянието, за нулево ниво е 



по-удобно да се избере разстояние до привличащото тяло 𝑟 = ∞. По определение 
потенциалната енергия на тяло с маса 𝑚 на разстояние 𝑟 = 𝑟0 от привличащото тяло с маса 𝑀 

ще е равна на работата на силата 𝐹 =
𝛾𝑀𝑚

𝑟2 , нужна за преместване от нулевото ниво 𝑟 = ∞ до 

𝑟 = 𝑟0. Тогава се пресмята, че 

𝐸𝑃 = −
𝛾𝑀𝑚

𝑟0
 

При което законът за запазване на енергията за тяло с маса 𝑚 под гравитационното влияние на 
тяло с маса 𝑀 се среща като 

𝐸 = 𝐸𝐾 + 𝐸𝑃 =
𝑚𝑣2

2
−

𝛾𝑀𝑚

𝑟
= 𝑐𝑜𝑛𝑠𝑡 

Тук 𝑣 е скоростта на тялото с маса 𝑚, 𝑟 е разстоянието между двете тела. В астрономията ЗЗЕ се 
ползва основно в горепосочения вид.  
 

ЗАДАЧИ 
 
Задача 2. Гравитация. Приемайки Земята за еднородно кълбо, изследвайте промяната на 
земното ускорение с отдалечаването от центъра на Земята. Ако радиусът на Земята е 𝑅, на 
какво разстояние 𝑟 от своя център Земята ни привилича най-силно? 
 
Задача 3. Движение по елипса. Планета се движи по елиптична орбита, в един от фокусите на 
която е разположена нейната звезда. Взимайки предвид работата на гравитационната сила, 
определете в кои точки от нейната орбита скоростта й ще е най-голяма/най-малка. 
Упътване: Скоростта на планетата в коя да е точка от нейната орбита е насочена по 
допирателната към орбитата. 
 
Задача 4. Пещера. Претегляйки се на механичен кантар, за наша изнедада измерената от него 
наша маса е 𝑘 пъти истинската й стойност. Да си представим, че това дължим на факта, че точно 
под нас има огромна сферична пещера, чийто център се намира на разстояние 𝑅/2 от нас, 
където 𝑅 е земният радиус. Колко е радиусът на пещерата? А колко е минималната възможна 
стойност, която 𝑘 може да приема? Приемете Земята за еднородно кълбо. 



3. ЗАКОНИ НА КЕПЛЕР. ДВИЖЕНИЕ ПО ЕЛИПСА 
 
закони на Кеплер 

 
Трите закона на Кеплер са формулирани в началото на XVII век и описват движението на 
планетите около Слънцето.  
 
Според първия закон на Кеплер всички тела, обикалящи около Слънцето, се движат по елипси, 
в единия от фокусите на които стои Слънцето. До XVII век преобладаващото схващане било, че в 
центъра на Слънчевата система и въобще Вселената стои Земята, а около нея орбитират 
планетите, Слънцето и останалите звезди – т.нар. геоцентрична система. Хипотезата, че в 
центъра реално лежи Слънцето (хелиоцентрична система) е разглеждана в Древна Гърция от 
Аристарх и през XVI век от Николай Коперник.  
 
Отделно от досега изученото за елипса, тук е уместно да 
споменем формулата за разстоянието от фокус на елипса 
до коя да е точка върху нея. Нека за елипса с голяма 
полуос 𝑎 вземем лъч, имащ за начало единия фокус и 
минаващ през другия фокус. Отчитаме от първия фокус в 
положителна посока от лъча ъгъл 𝜃. В полученото 
направление стои точка върху елипсата на разстояние 𝑟 
(вж. чертежа). Ако ексцентрицитетът на елипсата е 𝑒, то е 
изпълнено 

𝑟 =
𝑎(1 − 𝑒2)

1 − 𝑒 cos 𝜃
 

 

• Докажете, че 𝑙 =
𝑏2

𝑎
, където 𝑙 е фокалната полухорда за елипса с голяма и малка полуос 

съответно 𝑎 и 𝑏 (фокалната полухорда е едната половина от хорда от елипса, 
перпендикулярна на голямата ос и преминаваща през фокус) . 

 
За следващите дефиниции да вземем елиптична орбита около някакво централно тяло, имаща 
голяма полуос 𝑎 и ексцентрицитет 𝑒. В единия фокус на елипсата стои централното тяло, а в 
другия няма нищо. Точката от орбитата, в която орбитиращото тяло е най-близко до 
централното, се нарича перицентър. Съответното минимално разстояние се нарича 
перицентрално разстояние. Аналогично, точката на максимално отдалечаване от централното 
тяло е апоцентър, а съответното максимално разстояние е апоцентрално разстояние. За 
перицентрално и апоцентрално разстояние е вярно  𝑟𝑝 = 𝑎(1 − 𝑒) и 𝑟𝑎 = 𝑎(1 + 𝑒). 

• Докажете тези формули. 
В частния случай, когато централното тяло за орбитата е звезда, термините стават периастър и 
апоастър. Ако тази звезда е Слънцето – перихелий и афелий. Ако във фокуса на елиптична 
орбита е Земята – перигей и апогей. За Луната – периселений и апоселений. Макар и Кеплер да 
е формулирал законите си специфично имайки предвид Слънцето, те са верни за всякакви 
системи от орбитиращо и централно тяло – Луната и Земята, екзопланети и техните звезди 
(екзопланета – планета около друга звезда, а не Слънцето) и така нататък. 
 
Да дефинираме понятието радиус-вектор – вектор, определящ положението на точка в 
пространството спрямо някаква друга фиксирана отправна точка. За орбитиращо тяло радиус-
векторът представлява векторът от централното тяло до него. С движението на орбитиращото 
тяло той си променя положението, като описва някаква площ. По втория закон на Кеплер 
радиус-векторът на тяло по елиптична орбита описва равни площи за равни интервали от 
време. 



На чертежа са показани изминатите от тяло по елиптична 
орбита участъци за три равни интервала от време. По втория 
закон на Кеплер 𝑆1 = 𝑆2 = 𝑆3. Забелязва се, че орбитиращото 
тяло се движи по-бързо около перицентъра си, отколкото при 
апоцентъра си. 
 
Да разгледаме придвижването на тяло в перицентър за клонящ 
към нула интервал от време 𝛥𝑡. Тъй като интервалът е много 
малък, може да приемем, че за него тялото се движи по права 
линия и с постоянна скорост. Тогава площта, описана от 
радиус-вектора за време 𝛥𝑡, е равна на площта на получения 

правоъгълен триъгълник, т.е. 𝑆1 =
𝑣𝑝Δ𝑡 × 𝑟𝑝

2
, където 𝑣𝑝 е 

перицентралната скорост (вж. чертежа). За същия интервал 𝛥𝑡 
радиус-векторът на тяло в афелий по аналогия обира площ 

𝑆2 =
𝑣𝑎𝛥𝑡 × 𝑟𝑎

2
, където 𝑣𝑎 е апоцентрална скорост. В двата 

разгледани случая говорим за един и същ по дължина 
интервал от време, т.е. по втория закон на Кеплер 𝑆1 = 𝑆2.  
С това достигаме до зависимостта 

𝑣𝑝𝑟𝑝 = 𝑣𝑎𝑟𝑎 

 
Третият закон на Кеплер гласи, че за всички тела в орбита около едно и също централно тяло е 
еднакво отношението на големите полуоси на орбитите им на трета степен към орбиталните им 

периоди на втора степен, т.е.  
𝑎3

𝑇2
= 𝑐𝑜𝑛𝑠𝑡 (𝑎 и 𝑇 са означения за голяма полуос и орбитален 

период). Нека запишем третия закон на Кеплер за две тела около Слънцето, едно от които е 
Земята. 

𝑎3

𝑇2
=
𝑎𝑒
3

𝑇𝑒2
 

Тук 𝑎𝑒 и 𝑇𝑒  са съответно голяма полуос на земната орбита и орбитален период на Земята. Ако 
величините от лявата и дясната страна са в еднакви мерни единици, независимо какви точно, 

равенството остава вярно. Затова е валидно 
𝑎3[AU]

𝑇2[yr]
=

𝑎𝑒
3[AU]

𝑇𝑒
2[yr]

. Но 𝑎𝑒 = 1 AU и 𝑇𝑒 = 1 yr. Следва, че 

за всяко тяло, обикалящо около Слънцето: 
𝑎3[AU]

𝑇2[yr]
= 1 

Нютон извежда, че ако централното тяло има маса 𝑀, значително по-голяма от масата на 
орбитиращото тяло, то е изпълнено 

𝑎3

𝑇2
=
𝛾𝑀

4𝜋2
 

По-нататък ще разгледаме общия случай, в който двете маси са сравними. 
Да запишем последно изложената форма на третия закон на Кеплер веднъж за тяло около 
Слънцето (слънчевата маса е 𝑀⊙) и веднъж за тяло около друг обект с маса 𝑀. 

𝑎𝑒
3

𝑇𝑒2
=
𝛾𝑀⊙

4𝜋2
 

𝑎3

𝑇2
=
𝛾𝑀

4𝜋2
 

Разделяйки двата израза, 
𝑎3/𝑇2

𝑎𝑒
3/𝑇𝑒2

=
𝑀

𝑀⊙
 

Изразът ще остане верен, ако се използват какви да е еднакви мерни единици за 𝑎 и 𝑎𝑒, 𝑇 и 𝑇𝑒, 
𝑀 и 𝑀⊙. В такъв случай може да напишем 



𝑎3[AU]/𝑇2[yr]

𝑎𝑒
3[AU]/𝑇𝑒2[yr]

=
𝑀[M⊙]

𝑀⊙[M⊙]
 

𝑀⊙ в слънчеви маси е 1, а 
𝑎𝑒
3[AU]

𝑇𝑒
2[yr]

= 1, както показахме. Тогава 

𝑎3[AU]

𝑇2[yr]
=  𝑀[M⊙] 

Тази формула вече не е валидна само за тела около Слънцето, а и за всякакви тела по елиптична 
орбита. 
 
движение по елипса 
 
Да вземем обект с маса 𝑚, обикалящ около обект с маса 𝑀 по елиптична орбита с голяма 
полуос 𝑎, с ексцентрицитет 𝑒, с перицентрални разстояние и скорост 𝑟𝑝 и 𝑣𝑝, с апоцентрални 

разстояние и скорост 𝑟𝑎 и 𝑣𝑎. Това представлява затворена система, защото действа само 
гравитацията, а в затворена система енергията се запазва (вж. §2.). Законът за запазване на 

енергията, записан за перицентър и апоцентър, ще изглежда като 
1

2
𝑚𝑣𝑝

2 −
𝛾𝑀𝑚

𝑟𝑝
=

1

2
𝑚𝑣𝑎

2 −
𝛾𝑀𝑚

𝑟𝑎
. 

Отделно от това, по втория закон на Кеплер 𝑣𝑝𝑟𝑝 = 𝑣𝑎𝑟𝑎. С това ще изведем как 𝑣𝑝 и 𝑣𝑎 зависят 

от останалите параметри на системата. Разглеждаме следната система уравнения: 

{

1

2
𝑚𝑣𝑝

2 −
𝛾𝑀𝑚

𝑟𝑝
= 
1

2
𝑚𝑣𝑎

2 −
𝛾𝑀𝑚

𝑟𝑎
𝑣𝑝𝑟𝑝 = 𝑣𝑎𝑟𝑎

 

 

{
 

 
1

2
𝑣𝑝

2 −
𝛾𝑀

𝑟𝑝
= 
1

2
𝑣𝑎

2 −
𝛾𝑀

𝑟𝑎

𝑣𝑎 = 𝑣𝑝
𝑟𝑝

𝑟𝑎

 

Заместваме второто уравнение в първото: 

{
 
 

 
 1

2
𝑣𝑝

2 −
𝛾𝑀

𝑟𝑝
=
𝑚𝑣𝑝

2𝑟𝑝
2

2𝑟𝑎2
−
𝛾𝑀

𝑟𝑎

𝑣𝑎 = 𝑣𝑝
𝑟𝑝

𝑟𝑎

 

Засега да се абстрахираме от второто уравнение: 

(
1

2
−
𝑟𝑝
2

2𝑟𝑎2
)𝑣𝑝

2 = 𝛾𝑀(
1

𝑟𝑝
−
1

𝑟𝑎
) 

Заместваме 𝑟𝑝 = 𝑎(1 − 𝑒) и 𝑟𝑎 = 𝑎(1 + 𝑒): 

1

2
(1 −

𝑎2(1 − 𝑒)2

𝑎2(1 + 𝑒)2
)𝑣𝑝

2 = 𝛾𝑀 (
1

𝑎(1 − 𝑒)
−

1

𝑎(1 + 𝑒)
) 

1

2
(
(1 + 𝑒)2

(1 + 𝑒)2
−
(1 − 𝑒)2

(1 + 𝑒)2
)𝑣𝑝

2 =
2𝛾𝑀𝑒

𝑎(1 − 𝑒)(1 + 𝑒)
 

2𝑒

(1 + 𝑒)2
𝑣𝑝
2 =

2𝛾𝑀𝑒

𝑎(1 − 𝑒)(1 + 𝑒)
 

𝑣𝑝
2 =

𝛾𝑀𝑒(1 + 𝑒)

𝑎𝑒(1 − 𝑒)
 

𝑣𝑝 = √
𝛾𝑀

𝑎

1 + 𝑒

1 − 𝑒
 

Нека сега се върнем във втория израз на системата: 
𝑣𝑝𝑎(1 − 𝑒) = 𝑣𝑎𝑎(1 + 𝑒) 

𝑣𝑎 = 𝑣𝑝
1 − 𝑒

1 + 𝑒
 



𝑣𝑎 = √
𝛾𝑀

𝑎

1 + 𝑒

1 − 𝑒
 × 

1 − 𝑒

1 + 𝑒
 

Системата се преобразува до: 

{
 
 

 
 
𝑣𝑝 = √

𝛾𝑀

𝑎

1 + 𝑒

1 − 𝑒

𝑣𝑎 = √
𝛾𝑀

𝑎

1 − 𝑒

1 + 𝑒

 

Това са формулите за скорост в перицентър и апоцентър.  
 
Механичната енергия в разглежданата от нас система има някаква точно определена стойност, 
не зависеща от положението на орбитиращото тяло. Нека намерим тази стойност на енергията 
𝐸, разсъждавайки, например, за апоцентър: 

𝐸 =
1

2
𝑚𝑣𝑎

2 −
𝛾𝑀𝑚

𝑟𝑎
 

Използваме, че 𝑣𝑎 = √
𝛾𝑀

𝑎

1−𝑒

1+𝑒
 и 𝑟𝑎 = 𝑎(1 + 𝑒): 

𝐸 =
1

2
𝑚 (

𝛾𝑀

𝑎

1 − 𝑒

1 + 𝑒
) −

𝛾𝑀𝑚

𝑎(1 + 𝑒)
 

𝐸 = 𝛾𝑀𝑚(
1 − 𝑒

2𝑎(1 + 𝑒)
−

2

2𝑎(1 + 𝑒)
) 

𝐸 = 𝛾𝑀𝑚(
−(1 + 𝑒)

2𝑎(1 + 𝑒)
) 

𝐸 = −
𝛾𝑀𝑚

2𝑎
 

Получихме формулата за механична енергия по елиптична орбита. С нея може да се изведе 
обща зависимост за скоростта 𝑣 на тяло по елипса, намиращо се на разстояние 𝑟 от 
централното. Тъй като енергията е една и съща навсякъде по орбитата, 

1

2
𝑚𝑣2 −

𝛾𝑀𝑚

𝑟
= −

𝛾𝑀𝑚

2𝑎
 

𝑣2

2
= 𝛾𝑀(

1

𝑟
−
1

2𝑎
) 

𝑣2 = 𝛾𝑀 (
2

𝑟
−
1

𝑎
) 

𝑣 = √𝛾𝑀 (
2

𝑟
−
1

𝑎
) 

 
Когато едно тяло пада към друго от много голямо разстояние без начална скорост, 
гравитационното ускорение, което то изпитва, ще се променя забележимо с течение на 

падането – моментната му стойност зависи от моментната стойност на 
1

𝑟2
, където 𝑟 е 

разстоянието между двете тела. Това означава, че е неправилно да се ползват формулите за 
равноускорително движение по отношение на падането. Но тъй като падането става по отсечка, 
е възможно да се ползва друг способ. Отсечката може да представим като изродена елипса 
(елипса с ексцентрицитет 1), в единия край на която е началното положение на падащото тяло, 
а в другия край на която е центърът на другото тяло. Като при всяка елипса, тук ще важат 
законите на Кеплер. Времето за падане ще е половината от “орбиталния период” за елипсата, а 
голямата полуос ще е половината от разстоянието между двете тела. 
 
 



ЗАДАЧИ 
 
Задача 1. Възможни периоди. Афелийното разстояние на изкуствен спътник на Слънцето е 
20 AU. Оценете минималната и максималната възможна стойност на орбиталния му период. 
Справочни данни: 
Радиус на Слънцето – 696000 km 
1 AU – 1,496 × 1011 m 
 
Задача 2. Радиус-вектор. 

• Колко квадратни астрономически единици на година “обира” радиус-векторът на тяло 
около Слънцето с перихелий на 0,5 AU и афелий на 31,5 AU от него? 

• За колко време тялото изминава по-близката до Слънцето половина от орбитата си? 
 
Задача 3. Изследване на екзопланета. Около непозната планета с равнинен релеф и без 
атмосфера влиза по кръгова орбита модул за междупланетни експедиции. Космонавтите на 
борда му измерват орбитален период на модула 90 минути и радиус на орбитата на модула 
3000 километра. Намерете масата на планетата и минималната й възможна средна плътност. 
 
Задача 4. Височина на небето. Според един древногръцки мит богът Хефест изпуснал от небето 
чука си и той падал към Земята цели шест дни! Определете “височината” на небето според 
древните гърци. (IAO2003-β) 
Справочни данни: 
Маса на Земята – 5,972 × 1024 kg 
 
Задача 5. Сблъсък. Някаква планета по кръгова орбита около звезда, подобна на Слънцето, има 
единствен спътник с диаметър 26 m, обикалящ по кръгова орбита около планетата. Да 
предположим, че в някакъв момент всички движения на телата около звездата и на техните 
спътници внезапно спират. Тогава под действие на гравитационните сили планетата се сблъсква 
със спътника за 2,6 пъти по-малко време, отколкото със звездата, която е един милион пъти по-
масивна от планетата. Ако спътникът се намира на 2,6 милиона километра от планетата, 
определете орбиталния период на планетата. Не отчитайте гравитационните взаимодействия на 
системата планета-спътник с тела, различни от звездата. 
 
Задача 6. Стена. Механична система е съставена от две частици – лека и тежка, които 
взаимодействат с гравитационни сили. Леката частица се върти с период 𝑇 около тежката 
частица, която може да се смята за неподвижна. В даден момент леката частица се отразява 
еластично от стена, така че скоростта й става насочена точно към тежката частица. След колко 
време леката частица ще се удари в тежката? 
 
Задача 7. Наблюдения на комета. Таблицата показва 20 наблюдения (ефемериди) на кометата 
P/2007 R2 (Gibbs), направени през равни интервали от време, равни на 121 дни и 18 часа, т.е. 
има три наблюдения годишно. Наклонът на орбитата на кометата спрямо земната (т.нар. 
инклинация) е 𝑖 = 1,4339° и може да бъде пренебрегнат. Използвани са следните означения: 

- N – номер на наблюдението; 
- Date (UT) – дата на наблюдението, HR и MN са съответно часове и минути; 
- Delta –разстоянието от центъра на кометата до наблюдателя в момента на 

наблюдението, измерено в AU (астрономически единици); 
- S-O-C (Sun-Observer-Comet) – Ъгълът “Слънце-наблюдател-комета” в градуси (слънчевата 

елонгация на кометата, варираща от 0° до 180°); 
- /r – положението на кометата относно Слънцето за наблюдателя – /T означава, че 

кометата следва Слънцето (изгрява и залязва след Слънцето), а /L означава, че кометата 
води Слънцето (изгрява и залязва преди Слънцето) (вж. схемата); 



Използвайте данните от таблицата и: 

• Начертайте кометната орбита на милиметровата хартия. Означете позициите на кометата 
с номерата им N. Приемете, че Земята се движи с постоянна скорост по своята орбита. 

• Намерете стойностите на голямата полуос на орбитата 𝑎 и нейния ексцентритет 𝑒. 

• Без да използвате допълнителни данни (като масата на Слънцето или третия закон на 
Кеплер), оценете орбиталния период на кометата 𝑇. 

• Без да използвате допълнителни данни (като масата на Слънцето), намерете 
перихелийната и афелийната скорост на кометата (съответно 𝑣𝑝 и 𝑣𝑎). 

• Намерете масата на Слънцето 𝑀. 

• Намерете скоростта на кометата 𝑣 в положение 𝑁 = 7. (IAO2016-α) 
 

 
 
 
 
 



4. ОРБИТАЛНА МЕХАНИКА 
 
видове орбити 
 
Законите на Кеплер важат за тяло, обикалящо по елипса около 
друго, значително по-масивно тяло. Орбитите, обаче, не са 
непременно елипси. В общия случай взаимодействието на две 
тела под действие на гравитационните сили се описва от т.нар. 
задача за двете тела. Нейното решение в общия случай е твърде 
сложно, но когато едно от телата е с пренебрежимо малка маса, 
тя се опростява значително – масивното тяло приемаме за 
неподвижно, а орбитиращото се движи по едно от коничните 
сечения: кръгова, елиптична, парболична или хиперболична 
траектория. 
 
кръгова орбита 
 
Окръжността на практика е елипса, имаща ексцентрицитет 𝑒 = 0. В този смисъл кръговата 
орбита се явява частен случай на елиптична. При кръгова орбита разстоянието между двете 
тела е постоянно, при което голямата полуос на кръгова орбита е всъщност нейният радиус. 
Орбиталната скорост също е константа. Тази скорост може да се изрази по няколко начина. Тъй 
като тя остава една и съща, може да я представим просто като периметъра на орбитата, 
разделен на съответния орбитален период 𝑇. Ако орбитата има радиус 𝑟, то скоростта е 

𝑣 =
2𝜋𝑟

𝑇
 

Ако централното тяло има маса 𝑀, третият закон на Кеплер за кръговата орбита изглежда така: 
𝑟3

𝑇2
=

𝛾𝑀

4𝜋2
 

Получаваме 𝑇 = 2𝜋√
𝑟3

𝛾𝑀
. Заместването на така изразеното 𝑇 в 𝑣 =

2𝜋𝑟

𝑇
 дава в резултат 

𝑣 = √
𝛾𝑀

𝑟
 

Може да заключим, че минималната скорост, с която трябва да изстреляме тяло от планета, 

така че да го изведем в кръгова орбита около планетата, е равна на 𝑣1 = √
𝛾𝑀

𝑅
 (𝑀 и 𝑅 са масата и 

радиусът на планетата). Величината 𝑣1 наричаме първа космическа скорост. Тя трябва да се 
придаде в хоризонтална (успоредна на равнината на хоризонта) посока. 
 
парабола и хипербола 
 
Да разгледаме как се дефинира параболата. Нека в пространството изберем точка (фокус) и 
права (директриса). Параболата за тези точка и права се определя като ГМ на всички точки, за 
които разстоянието до фокуса е равно до разстоянието до директрисата.  

• По дадените тук фокус и директриса начертайте съответната парабола. 



По аналогичен начин можем да дефинираме всички конични сечения. Отново да вземем фокус 
и директриса. За тях “конично сечение с ексцентрицитет 𝑒” представлява ГМ на точките, за 
които разстоянието до фокуса се равнява 𝑒 пъти разстоянието до директрисата. Например, ако 
начертаем конично сечение с ексцентрицитет 1/2, ще получим елипса. При 𝑒 = 2 имаме 
хипербола. Систематизирано, 
 
 
 
 
 
 
два закона за запазване 
 
При параболична и хиперболична орбита законите на Кеплер са неприложими. Вместо това се 
работи със закона за запазване на енергията (ЗЗЕ) и закона за запазване на момента на 
импулса (ЗЗМИ). 
 
При всички орбити за орбитиращо тяло с маса 𝑚 и скорост 𝑣 на разстояние 𝑟 от централното 
тяло, имащо маса 𝑀, механичната енергия не се изменя: 

𝐸 =
𝑚𝑣2

2
−

𝛾𝑀𝑚

𝑟
= 𝑐𝑜𝑛𝑠𝑡 

Отделно от това, за елиптична орбита с голяма полуос 𝑎 е вярно 𝐸 = −
𝛾𝑀𝑚

2𝑎
< 0. При парабола 

𝐸 = 0 и при хипербола 𝐸 > 0. 
 
Когато говорим за движение по параболична или хиперболична орбита, не става дума за 
повтарящо се движение, както обикалянето по елипса.  Орбитиращо тяло, за което 𝐸 ≥ 0, се 
доближава максимално до централното тяло във върха на параболичната или хиперболичната 
си траектория, след което започва да се отдалечава и не се връща повече. Затова за система от 
тела, в която пълната механична енергия е по-голяма или равна на нула, се казва, че не е 
гравитационно свързана. 
 
Задача 1. Далеч от Земята. Каква най-малка скорост трябва да придадем на тяло от Земята, така 
че то да я напусне завинаги? 
 
Решение:  
Едно такова тяло трябва да не е гравитационно свързано със Земята, т.е. орбиталната му 
енергия да е по-голяма или равна на нула. Означаваме началната скорост на тялото с 𝑣, масата 
на тялото с 𝑚, масата на Земята с 𝑀 и радиуса на Земята с 𝑅. 
В началната точка от пътя на тялото енергията е 

𝐸 =
𝑚𝑣2

2
−

𝛾𝑀𝑚

𝑅
 

Съответно искаме 
𝑚𝑣2

2
−

𝛾𝑀𝑚

𝑅
≥ 0, откъдето 

𝑣 ≥ √
2𝛾𝑀

𝑅
 

Най-малката изпълняваща условието скорост е  

𝑣2 = √
2𝛾𝑀

𝑅
 

ексцентрицитет крива 

𝑒 ∈ [0; 1) елипса (𝑒 = 0 - окръжност) 

𝑒 = 1 парабола 

𝑒 ∈ [1; +∞) хипербола 



За Земята взимаме 𝑀 = 5,972 × 1024 kg и 𝑅 = 6,371 × 106 m, при което 𝑣2 ≈ 11,2 km/s. 
Величината 𝑣2 за дадено тяло се нарича втора космическа скорост (също параболична 
скорост). ∎ 
 
Вече разгледахме определението за първа космическа скорост (𝑣1) и можем да обобщим – ако 
изстреляме тяло от земната повърхност хоризонтално със скорост 𝑣, тялото ще: 
- падне обратно на Земята за 𝑣 < 𝑣1;           - тръгне по кръгова орбита за 𝑣 = 𝑣1; 
- тръгне по елиптична орбита за 𝑣1 < 𝑣 < 𝑣2;           - тръгне по параболична орбита за 𝑣 = 𝑣2; 

- тръгне по хиперболична орбита за 𝑣 > 𝑣2. 
 
Законът за запазване на момента на импулса твърди, че за орбитиращо тяло с маса 𝑚 на 
разстояние 𝑟 от централното тяло и с перпендикулярна на радиус-вектора компонента на 
скоростта 𝑣⊥ моментът на импулса 𝐿 се запазва: 

𝐿 = 𝑚𝑣⊥𝑟 = 𝑐𝑜𝑛𝑠𝑡 

На чертежа това означава 𝑚1𝑣⊥1𝑟1 = 𝑚2𝑣⊥2𝑟2, тоест 𝑚1𝑣1𝑟1 sin 𝜃1 = 𝑚2𝑣2𝑟2 sin 𝜃2, където 𝜃 е 
ъгъл между вектора на скоростта и радиус-вектора. Реално 𝑣⊥ = 𝑣 sin 𝜃, независимо от това 
дали 𝜃 е тъп или остър. Затова можем да запишем ЗЗМИ като 

𝐿 = 𝑚𝑣𝑟 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 
За елиптична орбита имаме 𝜃 = 90°, когато тялото се намира в перицентър или апоцентър, а за 
параболична/хиперболична орбита имаме 𝜃 = 90°, когато тялото е във върха на кривата. 
Изхождайки от казаното, при елипса е вярно 

𝑚𝑣𝑝𝑟𝑝  ×  1 = 𝑚𝑣𝑎𝑟𝑎  ×  1 

𝑣𝑝𝑟𝑝 = 𝑣𝑎𝑟𝑎 

Чрез ЗЗМИ изведохме зависимост, която преди това получихме в §3. с втория закон на Кеплер.  
 

ЗАДАЧИ 
 
Задача 2. Земната скорост. Да приемем, че Земята се движи по кръгова орбита със скорост 𝑣 =
30 km/s.  

• Каква ще е новата голяма полуос на земната орбита, ако внезапно увеличим земната 
орбитална скорост с 5 km/s? А ако я намалим с 5 km/s? 

• Каква е най-малката промяна, която можем да внесем в земната орбитална скорост, така 
че Земята да падне върху Слънцето?  

Приемете, че промените в скоростта са такива, че да не се променя посоката на вектора на 
скоростта на Земята, а само големината му. 
 
Задача 3. Катастрофа. Представете си, че на 5 юли 2084 г. масата на Слънцето внезапно 
намалява два пъти. Какъв ще е новият орбитален период на Земята? (IAO2009-αβ) 
Справочни данни: 
Ексцентрицитет на земната орбита – 0,017 



Упътване: Земята е в перихелий около 4 януари и в афелий около 4 юли. 
 
Задача 4. Трета космическа скорост. Третата космическа скорост 𝑣3 е минималната скорост, с 
която трябва да хвърлим тяло от Земята, така че то завинаги да напусне не само Земята, а и 
Слънчевата система. Намерете я, приемайки земната орбита за кръгова. 
Справочни данни: 
Маса на Слънцето – 2 × 1030 kg 
Радиус на Земята – 6371 km 
 
Задача 5. Прицел. Разглеждаме трупче без начална скорост, намиращо се на 𝑟 = 2 AU от 
Слънцето. Ако го хвърлим с параболичната за 𝑟 скорост в посока, перпендикулярна на радиус-
вектора, то ще тръгне по парабола с връх в точката на изстрелване. Ако го хвърлим със същата 
скорост в друга посока, то отново ще тръгне по параболична орбита, но върхът на параболата 
няма да е в мястото на хвърляне. Нека сме хвърлили трупчето на 45° от радиус-вектора. 
Изчислете тогава перихелийното разстояние и перихелийната скорост за това трупче. Намерете 
стойността на същите величини ако хвърлим трупчето не с параболична, а с кръгова скорост. 
 
Задача 6. Високовисочинен снаряд. Снаряд се изстрелва от земната повърхност (на морското 

равнище) с начална скорост 𝑣0 = √
𝛾𝑀

𝑅
 и под ъгъл 𝜃 =

𝜋

6
 спрямо местния хоризонт, където 𝑀 и 𝑅 

са съответно земните маса и радиус. Пренебрегнете съпротивлението на въздуха и въртенето на 
Земята. 

• Да се докаже, че орбитата на снаряда е елипса с голяма полуос 𝑎 = 𝑅. 

• Изчислете в земни радиуси най-голямата височина, която снарядът достига. 

• Какво е разстоянието между точките на изстрелване и падане на снаряда по земната 
повърхност, изразено в земни радиуси? 

• Какъв е ексцентрицитетът 𝑒 на орбитата на снаряда? 

• Намерете времето от изстрелване до приземяване на снаряда. (IOAA2009) 
 
Задача 7. Юпитер изчезва. Да предположим, че Юпитер внезапно изчезва. Всички луни на 
Юпитер стават независими тела. 

• Кои бивши Галилееви луни могат да напуснат Слънчевата система и при какви случаи? 

• Кои бивши Галилееви луни могат да паднат върху Слънцето и при какви случаи? 
Отговорите “кои луни” (или коя луна) и “при какви случаи” (или какъв случай) трябва да бъдат 
дадени под формата на чертежи, основани на пресмятания. Приемете орбитата на Юпитер за 
кръгова. (IAO2011-αβ) 
 

 
Задача 8. Международната космическа станция*. На графиката е отразена промяната на 
височината на орбитата на МКС с времето. Оценете средната плътност на атмосферата на 



височина 340-360 km. Приемете орбитата на МКС за кръгова. Масата на МКС е 362 тона. 
Приемете сечението на МКС (включително слънчевите панели) за 𝑆 = 500 m2. (IAO2010-β) 
 

 



5. ЪГЛОВ РАЗМЕР, ЪГЛОВА СКОРОСТ. ЛЪЧЕВА И ТАНГЕНЦИАЛНА СКОРОСТ. 
ПЛАНЕТНИ КОНФИГУРАЦИИ 
 
ъглов размер 
 
Ъгловият размер 𝛿 на тяло представлява ъгълът, който то заема в полезрението на 
наблюдателя от край до край. В астрономията обикновено се работи с малки ъглови размери и 
като мерни единици за ъгъл се използват не само градуси [°], а също дъгови минути [′] и дъгови 
секунди [′′]. Връзката между тези единици е 1° = 60′ и 1′ = 60′′.  Отделно от това се използват 
милисекунди [mas] (1 mas =  10−3 ′′) и микросекунди [μas] (1 μas = 10−6 ′′). 
 
Да разгледаме обект с линеен размер 𝑑, който гледаме от разстояние 𝑟 ≫ 𝑑, при което той има 
ъглов размер 𝛿. За да получим връзка между трите изброени величини, нека си представим 
окръжност с център наблюдателя, такава, че двата края на обекта да лежат на нея (вж. чертежа). 
Тогава ако запишем 𝛿 в радиани, дължината на 
дъгата, съответстваща на хордата 𝑑, ще бъде 𝑙 =
𝛿[rad]𝑟 (от определението за радиан). Но тъй 
като 𝑑 ≪ 𝑟, с голяма точност е изпълнено 𝑙 = 𝑑, 
при което 

𝑑 = 𝛿[rad]𝑟 
Ако искаме да запишем 𝛿 в друга мерна единица, формулата се променя в 

𝑑 =
𝜋

180
𝛿[°]𝑟,     𝑑 =

𝜋

180 × 60
𝛿[′]𝑟,     𝑑 =

𝜋

180 × 60 × 60
𝛿[′′]𝑟,  

защото 1 rad =
𝜋

180
°, 1° = 60′ и 1′ = 60′′. 

 
Задача 1. Юпитер.  

• Колко секунди е ъгловият размер на Юпитер за наблюдател в околностите на Слънцето? 

• Ако този наблюдател се приближи до повърхността на Юпитер 10000 пъти, колко градуса 
ще е новият ъглов размер на планетата за него?  

Радиусът на орбитата на планетата е 𝑟 = 5,2 AU, а диаметърът й е 𝑑 = 140000 km.  
 
Решение: 

а) 1 AU = 1,496 ×  108 km, при което 𝛿 =
140000

5,2 ×1,496 × 108
= 1,7997 ×

 10−4 rad ⇔ 37′′. 
б) Новото разстояние до повърхността на Юпитер е 𝑟1 ≈ 78000 km, което е 
по-малко от диаметъра на планетата. В такъв случай употребата на 
формулата от първата подточка ще е неправилна, защото тя е валидна само 
за 𝑑 ≪ 𝑟. Когато сме толкова близо до Юпитер, няма да виждаме целия му 
диск, а само част от него – тази, заключена между допирателните на 

чертежа. Получаваме 𝛿 = 2 arcsin
𝑑/2
𝑑

2
+𝑟1

≈ 56,5°. ∎ 

 
лъчева и тангенциална скорост 
 
Зрителен лъч към обект наричаме мисленият лъч, свързващ 
наблюдателя с обект. Той описва направлението, в което 
наблюдателят гледа. Когато наблюдаваното тяло се движи със 
скорост 𝑣 в пространството, възможно е тази скорост да се 
разложи на две компоненти – скорост 𝑣𝑟 по зрителния лъч, т.е. 
лъчева скорост, и скорост 𝑣𝑡, перпендикулярна на зрителния лъч, 
т.нар. тангенциална скорост.  



Лъчевата скорост има смисъл на величина, показваща скоростта на приближаване или 
отдалечаване от наблюдателя. Прието е тя да има знак, който показва посоката й – ако тя е 
насочена към наблюдателя, знакът й е отрицателен, а ако е насочена обратно, знакът й е 
положителен. Тангенциалната скорост от своя страна определя видимото за наблюдател 
отместване на обект – ако обектът има само лъчева скорост, наблюдателят няма как да разбере 
пряко, че обектът реално се движи. Но тангенциалната скорост не отговаря за приближаването 
и отдалечаването на тяло от наблюдаващия го. Горният чертеж показва, че векторът 𝑣 може да 
се разглежда като хипотенуза на правоъгълен триъгълник с катети 𝑣𝑟 и 𝑣𝑡, т.е. 𝑣2 = 𝑣𝑟

2 + 𝑣𝑡
2. 

 
ъглова скорост 
 
Ъгловата скрост (стандартно означение 𝜔 или 𝜇) за обект на разстояние 𝑟 от наблюдателя 

представлява изминатият ъгъл за единица време, гледано от наблюдателя, тоест 𝜇 =
𝛥𝜃

𝛥𝑡
. 

Изминатият ъгъл по небето ще зависи само от тангенциалната компонента 𝑣𝑡 на скоростта на 
обекта. Можем да разгледаме 𝛥𝜃 като ъглов размер на отсечката, измината от тялото за много 
малък интервал от време 𝛥𝑡 със скорост 𝑣𝑡 (вж. чертежа).  

Тогава е изпълнено: 

𝜇 [rad/s] =
𝛥𝜃[rad]

𝛥𝑡[s]
=

𝑣𝑡𝛥𝑡

𝑟
×

1

𝛥𝑡
=

𝑣𝑡

𝑟
 

Ъгловата скорост на звезда за неподвижен наблюдател в Слънчевата система също се нарича 
собствено движение (стандартно означение 𝜇). Собствените движения се записват най-вече в 
милисекунди за година [mas/yr]. 
 
планетни конфигурации 
 
Планетите около звезда периодично встъпват в специфични конфигурации помежду си. На 
схемите са илюстрирани конфигурациите за вътрешна планета (Меркурий, Венера) и за външна 
планета (Марс, Юпитер, Сатурн, Уран, Нептун) при зададено положение на Земята. 



Вътрешните планети винаги се намират близо до Слънцето на небето за земен наблюдател. 
Конфигурациите при тях са: 

- долно съединение (1) – планетата е възможно най-близо до Земята, а на земното небе е 
редом до Слънцето; 

- горно съединение (2)  – планетата отново е редом до Слънцето на небето, но е 
възможно най-далеч от Земята; 

- максимални елонгации (3, 4)  – елонгацията (ъгълът “планета-Земя-Слънце”) достига най-
голямата си възможна стойност, при което планетата е възможно най-далеч от Слънцето 
на небето и съответно видимостта й е най-добра; на схемите на планетните орбити 
поставяме изток отляво, при което 3 е максимална източна елонгация, а 4 е максимална 
западна елонгация. 

Когато вътрешна планета е на запад от Слънцето по небето, тя може да се наблюдава малко 
преди изгрев. Когато е на изток от Слънцето по небето, планетата може да се види малко след 
залез. По тази причина Венера често се нарича Вечерница или Зорница. 
 
Конфигурациите за външни планети са: 

- противостояние (опозиция) (5) – планетата е възможно най-близо до Земята, като на 
небето се намира на 180° от Слънцето и затова условията за наблюдение са най-добри; 

- съединение (6) – планетата е възможно най-далеч от Земята, намирайки се редом до 
Слънцето на небето; 

- квадратури (7, 8) – при източна квадратура и западна квадратура планетата е на ъглово 
отстояние 90° от Слънцето, съответно на изток и на запад от него. 

 
Отделно от споменатите досега конфигурации, съединение на две планети имаме, когато на 
небето те се намират много близо една до друга.  

• Ако на земното небе Сатурн е в съединение с Меркурий, когато Меркурий е в 
максимална източна елонгация, в каква конфигурация е Меркурий, гледано от Сатурн? 

 
Задача 2. Окултация. Наблюдава се централна окултация на звезда от Венера в максимална 
елонгация. Намерете нейната продължителност. Орбитите на Земята и Венера приемете за 
кръгови. (IAO2004-α) 
Справочни данни: 
Радиус на Венера – 6052 km 
Радиус на орбитата на Венера – 0,72 AU 
1 M⊙ (слънчева маса) – 2 × 1030 kg  
Упътване: Окултация се нарича покритие на някакво тяло от друго, имащо по-голям ъглов 
размер. Окултацията е централна, когато малкото тяло преминава през центъра на 
видимия диск на голямото. Окултацията се различава от пасаж по това, че пасажът е 
преминаване на тяло с по-малък ъглов размер пред тяло с по-голям ъглов размер, например 
Венера пред Слънцето. 
 
Решение: 
Означаваме 𝑟𝑒 – радиус на земната орбита, 𝑟𝑣 – радиус на венерианската орбита, 𝑟1 – разстояние 
Земя-Венера, 𝑣𝑣  – орбитална скорост на Венера, в случая равна на лъчевата й скорост (вж. 
чертежа), 𝑣𝑒 – орбитална скорост на Земята, имаща тангенциална компонента 𝑣𝑒𝑡 и лъчева 
компонента 𝑣𝑒𝑟, 𝛼 – ъгъл на максимална елонгация за Венера, 𝛿 – ъглов размер на Венера, 𝑅 – 
радиус на Венера, 𝑀⊙ – маса на Слънцето. 

Знаейки, че 1 AU = 1,496 × 1011 m, пресмятаме 𝑣𝑣 = √
𝛾𝑀⊙

𝑟𝑣
= 35,19 km/s и 𝑣𝑒 = √

𝛾𝑀⊙

𝑟𝑒
=

29,86 km/s. Също е ясно, че 𝛼 = arcsin (
𝑟𝑣

𝑟𝑒
) = 46,05°. Тогава обаче 𝑣𝑒𝑡 = 𝑣𝑒 cos 𝛼 = 20,72 km/s. 



Тази величина ще е еднаква по големина при 
източна, и при западна елонгация. Венера 
няма собствена тангенциална скорост в случая 
на максимална елонгация, т.е. за наблюдател 
на Земята тангенциалната скорост на Венера 
ще е точно 𝑣𝑒𝑡 в направление, обратно на това 
за движението на Земята. Разстоянието 𝑟1 се 

дава с 𝑟1 = √𝑟𝑒2 − 𝑟𝑣2 = 0,69 AU. Ъгловата 
скорост на Венера от Земята тогава ще е 𝜔 =
𝑣𝑒𝑡

𝑟1
= 2 × 10−7 rad/s. Поради въртенето на 

Земята около своята ос Венера ще се движи на 
небето с течение на денонощието, също както 
звездите. Но звездата, която Венера покрива, 
също извършва такова движение, т.е. двете се 
“съкращават”. Ъгловият размер на Венера е 

𝛿 =
2𝑅

𝑟1
= 1,17 × 10−4 rad. Сега от втория 

чертеж е видно, че от началото до края на 
окултацията Венера изминава един свой ъглов 
размер. Тогава въпросът в задачата се свежда 
до това за колко време Венера ще го измине. 

Това време е 𝑡 =
𝛿

𝜔
= 585 s ⇔ 9,75 min. ∎ 

 
 
 
 
 
 
 
 
 
 

ЗАДАЧИ 
 
Задача 3. Планети. Астроном любител фотографира със своя телескоп 
една и съща планета в различни моменти от време. Виждате две от 
изображенията на планетата на фигурата. Направете необходимите 
измервания и определете коя е тази планета. (НАО2016-I-9/10) 
 
Задача 4. Спътник. Наблюдател се опитва да намери стойността на 
ексцентрицитета на орбитата на изкуствен спътник. Когато спътникът е 
близо до своя апогей, за наблюдателя той се премества на ъглово 
разстояние 𝛥𝜃1 = 2′44′′ за много кратък интервал от време. Когато радиус-векторът, свързващ 
спътника и центъра на Земята, е перпендикулярен на голямата ос на орбитата, за същия 
интервал от време спътникът изминава ъглово разстояние 𝛥𝜃2 = 21′17′′. Пресметнете 
ексцентрицитета на орбитата на спътника. Приемете, че наблюдателят се намира в центъра на 
Земята. (IOAA2015) 
 



Задача 5. Космическа станция. Космическа станция обикаля около Земята по 
кръгова орбита на височина ℎ над земната повърхност. На Земята в равнината на 
орбитата на станцията се намира наблюдател, който вижда станцията като малка 
светла движеща се точка в небето. Поради голямата отдалеченост на станцията в 
сравнение със собствения й размер, наблюдателят няма зрителна представа за 
разстоянието до станцията. В тази задача можете да пренебрегнете околоосното 
въртене на Земята. Приемете Земята за еднородно кълбо с гладка повърхност. 
Оптичните аберации на атмосферата се пренебрегват.   

• Получете израз за периода 𝑇 на обикаляне на станцията като функция на ℎ 
и справочните данни. Пресметнете 𝑇 за Международната космическа станция, която 
обикаля на височина 423 km над Земята. 

• За колко време 𝑡 наблюдателят ще вижда станцията на небето? Получете израз за 𝑡 и го 
пресметнете за Международната космическа станция.  

• Станцията се намира над хоризонта в точка 𝑆, чийто радиус-вектор 𝑂𝑆⃗⃗⃗⃗ ⃗⃗  спрямо 
наблюдателя 𝑂 сключва ъгъл 𝜃 с вертикалата (вж. фигурата). Видимата за наблюдателя 
скорост, с която станцията се движи на фона на звездното небе е равна на ъгловата 

скорост 𝛽, с която се завърта зрителният лъч 𝑂𝑆⃗⃗⃗⃗  ⃗ . Получете израз за 𝛽 чрез 𝑇, 𝑅, ℎ и 
моментната стойност на 𝜃.  

• Получете израз за отношението 𝛽𝑧/𝛽ℎ на видимата скорост 𝛽𝑧 на станцията, когато 
минава през зенита (вертикално над наблюдателя) към видимата й скорост 𝛽ℎ в 
момента, когато се намира на хоризонта.  

• В момента, когато станцията минава през зенита, вертикално над наблюдателя на 
височина ℎ1 = 10 km прелита и самолет със скорост 𝑣1 =  300 m/s. Подобно на 
станцията, самолетът изглежда като малка движеща се точка. Кой от двата летателни 
апарата, станцията или самолетът, изглежда, че се движи по-бързо? 

Справочни данни: 
Гравитационно ускорение на земната повърхност – 𝑔0 = 9,81 m/s2  
Радиус на Земята – 𝑅 = 6,37 × 106 m   

 
Задача 6. Мечешки скок. Началото на XXI век – в пътеводителите на остров Шпицберген може 
да се намери следната фраза: “бялата мечка скача на 8 метра без предупреждение”. 
Средата на XXVI век – с цел да населят Слънчевата система с фауна, биолозите планират да 
закарат бели мечки от Шпицберген на ледените астероиди от пояса на Куйпер. Но физиците 
предупреждават, че някои скокливи мечки могат да станат независими обекти от пояса на 
Куйпър. Оценете на астероиди с какъв диаметър могат да се настаняват бели мечки безопасно 
от гледна точка на физиците. Отговорът трябва да представи във вид на формула неравенство. 
(IAO2008-αβ) 
Упътване: Скоростта на тяло, хвърлено под ъгъл, може да се разложи на две компоненти – 
хоризонтална и вертикална. При това движението по вертикалата е равнопроменливо, а 
движението по хоризонталата е равномерно. 

 
Задача 7. Две луни. Недалеч от екватора на Марс е възможно да бъде наблюдавано 
затъмнение на Деймос от Фобос. Колко време продължава пълната фаза на затъмнението, ако 
то се случва в зенита на наблюдателя? Приемаме, че орбитите на двата спътника са кръгови и 
почти лежат в равнината на екватора на планетата. (НАО2005-III-11/12) 
Справочни данни:  
Радиус на Марс – 3389,92 km  
Период на околоосно въртене на Марс – 24 h 37 m 22,66 s 
 
 
 



Данни за спътниците на Марс: 

Спътник Размер [km] 
 

Радиус на орбитата [km] Орбитален период 

Фобос 22,2 9378 7 h 39 m 13,84 s 

Деймос 12,4 23459 30 h 17 m 54,87 s 

 
Задача 8. Венера в елонгация.  

• Каква е лъчевата скорост на Венера в максимална източна елонгация? А в максимална 
западна елонгация? Радиусът на орбитата на Венера е 0,72 AU. 

• Какъв трябва да бъде ексцентрицитетът на венерианската орбита, така че когато Венера 
е в афелий и в максимална източна елонгация, лъчевата й скорост относно Земята да е 
равна на нула? Ако получите за ексцентрицитета уравнение с твърде сложно алгебрично 
решение, направете подходящо обосновано приближение, за да го опростите.  

Считайте, че двете планети се движат по орбити, лежащи в една равнина, като за първото 
подусловие приемете, че те са кръгови. (НАО2015-IV-β) 
 
Задача 9. Определяне на разстоянието до звезден куп. Разполагате със схема на разсеяния 
звезден куп Хияди, на която освен звездите са нанесени векторите на собствените движения на 
звездите от района на купа. В таблицата са дадени лъчевите скорости и собствените движения 
на 10 избрани звезди, принадлежащи на звездния куп. Съществува метод за определяне на 
разстоянията до движещи се купове, според който е достатъчно да знаем лъчевите скорости и 
собствените движения на звездите, както и ъгловите им разстояния до радианта на купа, т.е. 
точката в пространството, от която или към която всички звезди от купа се движат.  

• Изведете формула, свързваща тези величини. В нея нека лъчевите скорости бъдат в 
[km/s], собствените движения в дъгови секунди на година, а разстоянието да се 
получава в парсеци.   

• От схемата на купа продължете векторите на собствените движения на 10 – 15 звезди до 
пресичането им в една неголяма област. Приемете, че центърът на тази област е 
радиантът на купа. 

• Внимателно определете ъгловите разстояния от радианта на купа до всяка една от 
 подбраните звезди. Пресметнете по получената от вас формула разстоянието до всяка 
от избраните звезди и намерете средната величина, която е търсеното разстояние до 
звездния куп. (НАО2006-III-11/12) 

 

Номер 
на 

звездата 

Лъчева 
скорост 
[km/s] 

Ъгъл до 
радианта 

Собствено 
движение на 

звездата 
[arcsec/yr] 

Разстояние 
[pc] 

1 31,6  0,151  

2 31,0  0,121  

3 36,6  0,124  

4 38,3  0,114  

5 43,8  0,120  

6 38,2  0,098  

7 39,3  0,100  

8 38,6  0,108  

9 43,6  0,079  

10 38,8  0,065  

Средно разстояние:  
 

 

 



 



6. СИНОДИЧНИ ПЕРИОДИ 
 
някои периоди 
 
Сидеричен период за даден обект е времето, за което той прави едно пълно завъртане “спрямо 
звездите”, т.е. отчетено от неподвижен наблюдател. Понятието “сидеричен период” обхваща не 
само периоди по орбити около централно тяло, а и периоди на околоосно въртене – напр. 
сидеричният период на Земята около Слънцето е 365,2564 дни; сидеричният период на 
околоосно въртене на Меркурий е 58,65 d. 
 
Синодичен период за две тела е периодът 
между две последователни еднакви техни 
конфигурации спрямо някакъв фиксиран 
ориентир (напр. две противостояния или 
две максимални източни елонгации, като в 
тези случаи ориентирът е Слънцето).  
 
Аномалистичният период за дадено тяло е 
периодът между две преминавания през 
перицентъра на орбитата му. Той не 
съвпада със сидеричния период, тъй като 
големите оси на орбитите на телата 
принципно се отместват в пространството с 
времето, макар и това да става много 
бавно (вж. схемата). Аномалистичният 
период на Земята е 365,2596 дни. 
 
уравнения на синодичното движение 
 
За да изведем зависимост между синодичния период на две тела около трето и сидеричните 
периоди на тези тела, нека разгледаме някаква конфигурация на два обекта 𝐴 и 𝐵, обикалящи 
около централно тяло 𝐶, и пресметнем кога тя ще се повтори. 
 
В конфигурацията на чертежа ∢𝐴𝐶𝐵 = 0°. С времето, обаче, той ще 
започне да се увеличава поради различните ъглови скорости на 𝐴 и 𝐵, 
произлизащи от различните сидерични периоди на 𝐴 и 𝐵. Да приемем 
занапред, че 𝐴 и 𝐵 се движат по орбитите си в една и съща посока, 
взимайки орбитите за кръгови. Ако означим сидеричните им периоди 
с 𝑇𝐴 и 𝑇𝐵, то ъгловите им скорости, в градуси за единица време, ще са 

𝜔𝐴 =
360°

 𝑇𝐴
 и 𝜔𝐵 =

360°

 𝑇𝐵
. Относителната ъглова скорост, с която ще се 

увеличава ъгълът ∢𝐴𝐶𝐵, е ∆𝜔 = 𝜔𝐴 − 𝜔𝐵. Когато този ъгъл стане 360° 
(т.е. 0°), се връщаме в началната конфигурация. Това става за един 

синодичен период 𝑇syn =
360°

𝛥𝜔
. Тогава: 

𝑇syn =
360°

𝜔1 − 𝜔2 
 

𝑇syn =  
360°

360°
𝑇𝐴

−
360°

𝑇𝐵

 

𝑇syn =
360°

360° (
1
𝑇𝐴

−
1

𝑇𝐵
)

 



𝑇syn =
1

1
𝑇𝐴

−
1

𝑇𝐵

 

1

𝑇syn
=

1

𝑇𝐴
−

1

𝑇𝐵
 

Формулата 
1

𝑇syn
=

1

𝑇𝐴
−

1

𝑇𝐵
 (при 𝑇𝐴 < 𝑇𝐵) е приложима за всеки две тела със сидерични периоди 

𝑇𝐴 и 𝑇𝐵, движещи се в една и съща посока по кръгови орбити. 

• Изведете аналогична формула за две тела, движещи се в противоположни посоки. 
 

ЗАДАЧИ 
 
Задача 1. Планета гигант. Около далечна звезда е открита газова планета гигант, подобна на 
Юпитер. Тя се върти около оста си с период 8 часа. Голямото виолетово петно е огромен вихър в 
бурната атмосфера на планетата, който се намира на екватора. Един от спътниците на планетата 
– Скалистият спътник – се движи около нея с период 16 часа. А Леденият спътник се движи на 
по-далечна орбита с период 24 часа. Двата спътника имат кръгови екваториални орбити и 
обикалят около планетата в същата посока, в която тя се върти около оста си.  

• През какъв интервал от време Скалистият спътник прелита над Голямото виолетово 
петно? А Леденият спътник?  

• През какъв интервал от време при движението си около планетата спътниците се 
сближават на минимално разстояние един от друг? (НАО2014-II-7/8) 

 
Задача 2. Планети около Бялото слънце. В периодите на най-благоприятна видимост жителите 
на Виолетовата планета виждат Зелената планета на максимално отстояние 45° източно или 
западно от Бялото слънце. А Оранжевата планета се наблюдава на 30° максимално отстояние 
източно или западно от Бялото слънце. За жителите на Виолетовата планета в годината има 300 
денонощия. 

• Нарисувайте схема на планетната система. 

• Намерете орбиталните периоди на Зелената и Оранжевата планета. Резултатите изразете 
в денонощия за Виолетовата планета. 

• През какви интервали от време се повтарят периодите на най-благоприятна видимост на 
Зелената и Виолетовата планета за жителите на Оранжевата планета? (НАО2012-III-7/8) 

 
Задача 3. Велики противостояния. В днешно време великите противостояния на Марс стават 
веднъж на всеки 15 или 17 години. С цел опростяване на колонизацията на Марс, подобряване 
на неговите природни условия и увеличаване на блясъка на планетата по време на велико 
противостояние, цивилизацията ни измисля амбициозен проект – да се намали с 6 % голямата 
полуос на марсианската орбита, без да се променя нейният ексцентрицитет. Колко често ще 
имаме велики противостояния в такъв случай? (IAO2014-αβ) 
Справочни данни:  
Голяма полуос на орбитата на Марс – 1,524 AU 
Ексцентрицитет на орбитата на Марс – 0,093 
Упътване: Велико противостояние на Марс и Земята е противостояние, при което Марс е 
най-ярък, т.е. е в перихелия на своята орбита. Ексцентрицитетът на земната орбита е 
много малък и не е от голямо значение за яркостта на Марс при противостояние. 
 
Задача 4. Марсиански календар. Вие сте придворен астроном при велик марсиански владетел. 
Наблюдавате спътниците Фобос и Деймос с цел да усъвършенствате марсианската календарна 
система.  

• В каква посока ще става видимото денонощно движение на Фобос и Деймос по 
марсианското небе?  



• За времето между два изгрева на Деймос колко изгрева на Фобос ще се наблюдават? 

• Да предположим, че в някакъв момент наблюдател на марсианския екватор вижда 
окултация на Деймос от Фобос в зенита. В какъв интервалот време около този момент 
ще съществуват точки от повърхността на Марс, от които също ще може да се види 
окултация на Фобос и Деймос? Приемаме, че орбитите на двата спътника лежат в 
екваториалната равнина на Марс. (НАО2009-III-11/12) 

Справочни данни:  
Орбитален период на Фобос – 0,31891 d (земни) 
Орбитален период на Деймос – 1,26244 d (земни) 
Период на околоосно въртене на Марс – 1,02595 d (земни) 
Маса на Марс – 6,4171 × 1023 kg 
Радиус на Марс – 3389,5 km 
 
Задача 5. Цялото Слънце. Космическите станции STEREO А и STEREO В се движат около 
Слънцето по орбити, близки до земната орбита. Те имат за задача да фотографират Слънцето от 
различни страни. Орбиталните периоди на двете станции са такива, че едната от тях леко 
изпреварва Земята при движението си около Слънцето, а другата леко изостава, но винаги 
двете станции са отклонени на еднакви ъгли симетрично от двете страни на Земята по нейната 
орбита. Станцията STEREO A се движи по орбита, чийто радиус е с 5,58 × 106 km по-малък от 
радиуса на земната орбита.  

• Намерете орбиталните периоди на двете станции.  

• Колко време след старта двете станции ще бъдат на по 90° от двете страни на Земята 
почти по нейната орбита и ще фотографират две противоположни страни на Слънцето?  

На 12 декември 2007 г. станциите STEREO А и В фотографират активно образувание в слънчевата 
корона, което се вижда като по-голямо ярко петно на дадените изображения. В същото време 
образуванието е заснето и от станцията SOHO, която се намира в т.нар. първа точка на Лагранж 
на правата линия, свързваща Земята и Слънцето. За наблюдател на Слънцето станциите STEREO 
А и В са на ъгъл 42° една от друга.  

• Оценете приблизително височината на активното образувание над „повърхността” на 
Слънцето. За целта измерете необходимите величини по изображенията и направете 
подходящи усреднения и приближения. Радиусът на Слънцето е 696000 km. (НАО2013-
III-11/12) 



7. ЕЛЕМЕНТИ ОТ МЕХАНИКАТА – 2 
 
хармонични осцилатори 
 

Хармоничен осцилатор наричаме всяка система, която 
изпитва връщаща сила 𝐹, правопропорционална на 
отклонението 𝑥 от равновесното си положение, тоест 𝐹 = 𝑘𝑥, 
където 𝑘 е някаква константа. За да проследим как става 
движението на хармоничните осцилатори, да разгледаме 
характерен пример за такъв – пружинно махало. Нека 
отклоним махалото от равновесното му положение на 
разстояние 𝑥 (положение 𝐶 на схемата) и го пуснем да се 
движи. Връщащата сила е с направление към равновесното 
положение, т.е. и съответстващото й ускорение. Затова 
движейки се към равновесното положение, пружинното 
махало ще увеличава скоростта си. След подминаване на 
равновесното положение (𝐴), обаче, ускорението вече е 
насочено в посока, обратна на тази на движението, при което 
махалото се забавя. Скоростта на махалото става равна на 
нула в положение 𝐵 на схемата, което е симетрично на 𝐶 
относно равновесното положение. След момента на нулева 
скорост в 𝐵 махалото отново тръгва към равновесното 
положение, пак достига максимална скорост там, пак се 
връща в 𝐶 с нулева скорост (тогава махалото е направило 
един период) и така нататък. Скоростта, която разглежданото 
пружинно махало има, всъщност се изменя синусоидално 
(т.е. както се изменя 𝑦 във функцията 𝑦 = sin 𝑥 при 
равномерна промяна на 𝑥). 

Периодът на всеки хармоничен осцилатор с маса 𝑚 се задава с 𝑇 = 2𝜋√
𝑚

𝑘
, където 𝑘 е същата 

константа, като тази в 𝐹 = 𝑘𝑥.  
Тежестта на математичното махало (вж. фигурата) също може да се 
приеме за хармоничен осцилатор при малки отклонения от 
равновесното положение. При такива малки отклонения се доказва, че 

периодът на махалото е приблизително 𝑇 = 2𝜋√
𝑙

𝑔
, където 𝑙 е дължината 

на нишката, а 𝑔 е гравитационното ускорение там, където се поставено 
махалото. 
 
приливни сили 

 
Приливните сили възникват като следствие от гравитацията и обясняват наличието на приливи 
и отливи на Земята. Нека разгледаме гравитационните ускорения, които сферично тяло с маса 
𝑀 ще създава върху отделните части на друго тяло с радиус 𝑅 и център, отдалечен на 𝑟 ≫ 𝑅 от 
центъра на обекта с маса 𝑀. Първо да поясним, че по теорема (вж. §2.) тялото с маса 𝑀 действа 
гравитационно на другото по същия начин, както точка с маса 𝑀 на разстояние 𝑟 от центъра му. 
По това съображение заместваме тялото с въпросната материална точка (вж. чертежа). 

Гравитационното ускорение за точка 𝑂 на схемата се изразява с 𝑔0 =
𝛾𝑀

𝑟2
. За точка 𝐴 то е 𝑔1 =

𝛾𝑀

(𝑟−𝑅)2. Аналогично, за точка 𝐵 ускорението е 𝑔2 =
𝛾𝑀

(𝑟+𝑅)2. Разликата между 𝑔1 и 𝑔0 (или 

разликата между 𝑔0 и 𝑔2, на практика със същата големина) наричаме приливно ускорение 𝑎𝑡. 



За приливното ускорение е изпълнено 𝑎𝑡 = 𝑔1 − 𝑔0 =
𝛾𝑀

(𝑟−𝑅)2
−

𝛾𝑀

𝑟2
= 𝛾𝑀

𝑟2−(𝑟−𝑅)2

𝑟2(𝑟−𝑅)2
=

𝛾𝑀(2𝑅𝑟−𝑅2)

𝑟2(𝑟−𝑅)2
≈

2𝛾𝑀𝑅𝑟

𝑟4 =
2𝛾𝑀𝑅

𝑟3 . (накрая използвахме, че  𝑟 ≫ 𝑅). По аналогичен начин се показва, че 𝑔0 − 𝑔2 ≈
2𝛾𝑀𝑅

𝑟3 . 

Става ясно, че относителните гравитационни ускорения на 𝐴 и 𝐵 спрямо 𝑂 са равни по големина 
и насочени обратно на направлението към 𝑂. Това обяснява защо поради гравитационното 
влияние на Луната водната маса в земните океани се “оттегля” в две области, приблизително 
лежащи на правата, свързваща центровете на Земята и Луната. В тези области морското 
равнище е по-високо от обикновено и има прилив. Съответно на други места по Земята 
морското равнище е по-ниско от обикновено и имаме отлив. 
 
Задача 1. Приливи. Намерете времето между два прилива. 
 
Решение:  
В даден момент от време прилив има в две области 
от Земята – тази, “над” която е Луната, и нейната 
диаметрално противоположна по Земята.  
Така за всяка област времето между два прилива е 
половината от времето 𝑇’ между две преминавания 
на Луната “над” тази област. Това време може да се 
разглежда като синодичен период на Луната и на 
точка от земната повърхност. Тогава е изпълнено 

1

𝑇′
=

1

𝑇𝐸
−

1

𝑇𝑀
 

Тук 𝑇𝐸 е периодът за едно пълно завъртане на Земята около нейната ос, а 𝑇𝑀 е сидеричният 
период на Луната. Замествайки 𝑇𝑀 = 27,32 d и 𝑇𝐸 = 23 h 56 m 04 s ⇔ 0,9973 d (𝑇𝐸 ≠ 1 d; за 
това ще стане дума по-късно), получаваме, че времето между два прилива е: 

𝑇′′ =
𝑇′

2
= 12 h 25 m ∎ 

 

Подобно на Луната, Слънцето също създава приливни сили върху Земята, т.е. също има влияние 
върху приливите и отливите. 

• Сравнете по големина приливното ускорение, създавано от Слънцето, с това, създавано 
от Луната. 

• При каква фаза на Луната отливите са най-ниски? 
 

криволинейно движение 
 
В три измерения правоъгълната координатна система (вж. схемата) има три оси – Ox, Oy и Oz. 

• Намерете големината на радиус-векторите на точки 𝑃 и 𝑄 на схемата спрямо (0,0,0). 
Упътване: Разложете радиус-векторите на компоненти по осите Ox, Oy и Oz. После 
използвайте за тях питагоровата теорема. 



В три измерения скоростите и 
ускоренията на телата се разлагат на 
компонентите си по осите така: 

𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

𝑎 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

 
Сега да се абстрахираме от движение в 
пространството и да разгледаме само 
движение в равнината по някаква 
произволна крива. Материална точка, 
извършваща криволинейно движение, 
има скорост 𝑣, която винаги е насочена 
по допирателната на кривата, и 
ускорение 𝑎, което може да разложим 
на две взаимноперпендикулярни 
компоненти – нормално ускорение 𝑎𝑛 
и тангенциално ускорение 𝑎𝜏 
(насочено по допирателната). При това 

тангенциалното ускорение променя само големината на скоростта (или 𝑎𝜏 =
𝛥𝑣

𝛥𝑡
), а нормалното 

ускорение променя само нейната посока. Всяка много малка област от кривата на движение 
може да се представи като дъга от някаква окръжност, която наричаме оскулачна окръжност 

(вж. чертежа). Доказва се, че нормалното ускорение за дадена точка от кривата е 𝑎𝑛 =
𝑣2

𝑅
, 

където 𝑅 е радиусът на оскулачната окръжност (още радиус на кривината) за тази точка. 

 
Нека разгледаме частния случай на 
движение по окръжност. При такова 
движение оскулачната окръжност 
всъщност е самата кръгова траектория, 
поради което нормалното ускорение 
остава едно и също с времето. 
Нормалното ускорение при движение по 
окръжност се нарича центростремително 
ускорение. 

В §5. въведохме, че 𝜔 =
𝛥𝜃

𝛥𝑡
, тоест че 

ъгловата скорост е изминатият ъгъл за 
единица време. По аналогичен начин се 

дефинира величината ъглово ускорение 𝜀 – то е изменението на ъгловата скорост за единица 

време, или 𝜀 =
𝛥𝜔

𝛥𝑡
. В §5. показахме, че 𝜔 =

𝑣𝑡

𝑟
 (тук 𝑣𝑡 е тангенциална скорост, а 𝑟 е разстояние от 

мястото на наблюдение до движещото се тяло). По аналогия 𝜀 =
𝑎𝜏

𝑅
. При движение по 

окръжност ъгловата скорост на въртене е 𝜔 =
𝑣

𝑅
. И ако приемем, че тангенциалното ускорение 

при това движение е 𝑎𝜏 = 𝑐𝑜𝑛𝑠𝑡, то от кинематичните зависимости в §2. (𝑣 = 𝑣0 + 𝑎𝑡 и 𝑠 =

𝑣0𝑡 +
𝑎𝑡2

2
) директно следва 

𝜔 = 𝜔0 + 𝜀𝑡 

𝜃 = 𝜔0𝑡 +
𝜀𝑡2

2
 

 



Ако въобще нямахме тангенциална компонента на ускорението, 

движението по окръжност щеше да е равномерно и 𝑎 = 𝑎𝑛 =
𝑣2

𝑅
=

(
𝑣

𝑅
)

2

𝑅 = 𝜔2𝑅. Затова когато някакво тяло с маса 𝑚 се движи 

равномерно по окръжност под действието на няколко сили, 
резултантната сила винаги е равна на центростремителната: 𝐹𝑐 =
𝑚𝑎𝑛 = 𝑚𝜔2𝑅.  
 
механика на твърдо тяло* 
 
Моментът (или въртящият момент) на сила спрямо дадена точка 
се дефинира като 𝑀 = 𝐹𝑟 sin 𝛼, където 𝐹 е големината на силата, 𝑟 е разстоянието от дадената 
точка до приложната точка на силата, а 𝛼 е ъгълът между радиус-вектора и вектора на силата. 
Спомняйки си определенията за момент на импулса 𝐿 = 𝑚𝑣𝑟 sin 𝛼 = 𝑝𝑟 sin 𝛼 (𝑝 е импулс) и за 

сила 𝐹 =
𝛥𝑝

𝛥𝑡
, стигаме до 𝑀 =

𝛥𝐿

𝛥𝑡
. Когато една сила е насочена точно по направление на точката, 

спрямо която смятаме нейния момент, имаме sin 𝛼 = 0 и съответно 𝑀 =
𝛥𝐿

𝛥𝑡
= 0, т.е. 

изменението на момента на импулса за единица време е 0. При орбитиране около централно 
тяло действат само гравитационни сили, насочени към централното тяло. Затова моментът на 
импулса на орбитиращото тяло относно централното не се променя (ЗЗМИ в §4.). 
 
Да вземем произволно твърдо тяло, въртящо се около ос 
𝑧 с ъглова скорост 𝜔. Ако “разбием” тялото на безброй 
много материални точки, всяка с маса 𝑚𝑖 (𝑖 = 1,2,3 …), 
скорост на въртене около оста 𝑣𝑖  и разстояние до оста 𝑟𝑖, 
за всяка от точките моментът на импулса спрямо оста 𝒛 
представлява моментът на импулса на всяка от тях 
спрямо точката от 𝑧, лежаща в съответната равнина на 

движение, т.е. 𝐿𝑖 = 𝑚𝑖𝑣𝑖𝑟𝑖 = 𝑚𝑖𝜔𝑟𝑖
2 (тук sin 𝛼 = 1, 

защото всяка точка от твърдото тяло се движи по 
окръжност около оста).  
Моментът на импулса на тялото спрямо оста 𝒛 се дава с 
𝐿𝑧 = ∑ 𝐿𝑖  (в математиката ∑ се използва за означение на 
сума; тук ∑ 𝐿𝑖 = 𝐿1 + 𝐿2 + 𝐿3 + ⋯). Говорим за твърдо 
тяло, което означава, че ъгловата скорост на всички 
разглеждани материални точки е еднаква. Затова ∑ 𝐿𝑖 =
∑ 𝑚𝑖𝜔𝑟𝑖

2 = 𝜔 ∑ 𝑚𝑖𝑟𝑖
2. Величината 𝐼𝑧 = ∑ 𝑚𝑖𝑟𝑖

2 се нарича 
инерчен момент на твърдото тяло спрямо оста 𝑧; можем 

да запишем 𝐿𝑧 = 𝐼𝑧𝜔 = 𝑐𝑜𝑛𝑠𝑡 (𝐿𝑧 = 𝑐𝑜𝑛𝑠𝑡 идва от ЗЗМИ). Прилагайки формулата 𝑀 =
𝛥𝐿

𝛥𝑡
 за 

всяка от материалните точки, имаме ∑ 𝑀𝑖 =
𝛥 ∑ 𝐿𝑖

𝛥𝑡
, еквивалентно на 𝑀𝑧 =

𝛥𝐿𝑧

𝛥𝑡
, където 𝑀𝑧 е 

сумарният момент на действащите външни сили спрямо оста 𝑧. Но от 𝐿𝑧 = 𝐼𝑧𝜔 следва 𝛥𝐿𝑧 =

𝐼𝑧𝛥𝜔, а от това 𝑀𝑧 =
𝐼𝑧𝛥𝜔

𝛥𝑡
= 𝐼𝑧𝜀 (𝜀 е ъгловото ускорение за тялото). 

 
Задача 2. Теглилки и макара. През макара с радиус 𝑅, която може да се върти без триене около 
хоризонтална ос 𝑂, е прехвърлена неразтеглива нишка. На двата края на нишката са завързани 
теглилки с маси 𝑚1 и 𝑚2. Инерчният момент на макарата спрямо оста на въртене е 𝐼. Нишката 
не се хлъзга по макарата. Определете големината на ускорението 𝑎 на теглилките. Масата на 
нишката и съпротивлението на въздуха се пренебрегват.  
 
Решение:  



На чертежа са показани всички сили, действащи на системата – 
силите на тежестта 𝑚1𝑔 и 𝑚2𝑔 за двете теглилки, силата на тежестта 
за макарата 𝐺, съответната й реакция на опората 𝑁 (“опората” в 
случая е оста 𝑂), двете двойки сили на опън 𝑇1 и 𝑇2. Приложната 
точка на 𝐺 и 𝑁 е по оста 𝑂, така че тези две сили не създават въртящи 
моменти (в 𝑀 = 𝐹𝑟 sin 𝛼 имаме 𝑟 = 0). Силите на опън 𝑇1 и 𝑇2 въртят 
макарата в противоположни посоки, съответно по и обратно на 
часовниковата стрелка, при което разликата на създаваните от тях 
въртящи моменти дава резултантния момент: 𝑇1𝑅 − 𝑇2𝑅 = 𝐼𝜀 (тук 𝜀 е 
ъглово ускорение). Неразтегливата нишка и теглилките могат да се 
разглеждат като едно цяло тяло, така че скоростите и ускоренията им 
“поотделно” съвпадат. Точките от периферията на макарата се 
движат със същото ускорение, както и нишката, при което за 

ъгловото ускорение може да се запише 𝜀 =
𝑎

𝑅
. За теглилките може да 

запишем 𝑚1𝑔 − 𝑇1 = 𝑚1𝑎 и 𝑚2𝑔 − 𝑇2 = −𝑚2𝑎. Накрая поставихме 
минус, защото теглилките се движат в противоположни посоки. 
Решението на получената система от уравнения е 
 

𝑎 =
𝑚1 − 𝑚2

(𝑚1 + 𝑚2) (1 +
𝐼

𝑅2(𝑚1 + 𝑚2)
)

𝑔 

Инерчният момент на макарата, когато тя е сравнително лека, е много по-малък от този на 

теглилките спрямо оста на въртене, т.е. 𝑎 ≈
𝑚1−𝑚2

𝑚1+𝑚2
𝑔. ∎ 

 
Ще изведем формули за инерчните моменти на някои тела. 

• Определете инерчния момент на тънък пръстен с радиус 𝑅 и маса 𝑀 спрямо ос през 
центъра му, перпендикулярна на равнината, в която пръстенът лежи. 

 
Занапред ще се възползваме от две теореми.  

1) Теорема на Щайнер: 
Инерчният момент 𝐼 на твърдо тяло спрямо дадена ос на въртене е равен на сумата от: 

- инерчния момент на тялото спрямо ос, успоредна на дадената и преминаваща през 
неговия център на масата 𝐶; 

- произведението на масата на тялото 𝑚 и квадрата на разстоянието 𝑑 между двете 
разглеждани оси. 

Във вид на формула, 𝐼 = 𝐼𝑐 + 𝑚𝑑2  

• Известно е, че инерчният момент на тънка пръчка с маса 𝑀 и дължина 𝐿 спрямо ос, 

перпендикулярна на пръчката и минаваща през средата й, е 
1

12
𝑀𝐿2. На колко е равен 

инерчният момент на същата пръчка спрямо ос, перпендикулярна на нея, но минаваща 
през края й? 
 
 

 
 
 
 
 

2) Теорема за перпендикулярните оси: 
Сумата от инерчните моменти на твърдо тяло спрямо три взаимно перпендикулярни оси, 
пресичащи се в една точка 𝑂, е равна на удвоената сума от произведенията на масите 𝑚𝑖 на 



материалните точки, от които се състои тялото, и квадратите на техните разстояния 𝑟𝑖 до точка 

𝑂: 𝐼𝑥 + 𝐼𝑦 + 𝐼𝑧 = 2 ∑ 𝑚𝑖𝑟𝑖
2. 

• Определете инерчния момент на тънък пръстен с радиус 𝑅 и маса 𝑀 спрямо ос, явяваща 
се негов диаметър. 

• Определете инерчния момент на сфера с радиус 𝑅 и маса 𝑀. 
 

Даваме наготово формули за инерчните моменти на някои други тела: 

- за еднородно кълбо с радиус 𝑅 и маса 𝑀: 𝐼 =
2

5
𝑀𝑅2 

- за еднороден диск/цилиндър с радиус 𝑅 и маса 𝑀 спрямо оста на симетрия: 𝐼 =
1

2
𝑀𝑅2 

 
Инерчният момент е адитивна величина, т.е. инерчният момент на система от няколко тела 
спрямо дадена ос е равен на сбора от инерчните моменти на всяко от телата поотделно спрямо 
същата тази ос. 

• Пресметнете инерчния момент на близалката на чертежа (състояща се от кълбо и тънка 
пръчка с еднаква плътност) спрямо зададената ос. 

 

 
Задача 3. Дни и години. Приливните сили създават въртящ момент върху Земята. Приемайки, 
че през последните няколкостотин милиона години този въртящ момент и дължината на 
годината са постоянни и съответно равни на 6,0 × 1016 N ∙ m и 3,15 × 107 s, намерете броя дни 
в годината преди 6,0 × 108 yr. (IOAA2011) 
 
Решение:  
Под дължина на денонощието ще имаме предвид период на пълно завъртане на Земята около 
своята ос. Въртящият момент 𝑀 е свързан с ъгловото ускорение на Земята 𝜀 чрез 𝑀 = 𝐼𝜀 =
2

5
𝑀𝐸𝑅2𝜀, където 𝑀𝐸 и 𝑅 са съответно маса и радиус на Земята (направихме приближение, че 

Земята е еднородна). Знаейки, че дължината на денонощието постепенно се увеличава, може 
да напишем 𝜔 = 𝜔0 − 𝜀𝑡, където 𝜔 и 𝜔0 са ъгловите скорости на Земята, съответно сега и преди 
време 𝑡 = 6,0 × 108 yr. Имайки предвид, че сегашната и тогавашната продължителност на 

денонощието са съответно 𝑇 =
2𝜋

𝜔
= 23 h 56 m и 𝑇0 =

2𝜋

𝜔0
, получаваме 𝑇0 ≈ 420 d (става дума за 

420 тогавашни дни). ∎ 

 
ЗАДАЧИ 
 
Задача 4. Граница на Рош. Оценете грубо на какво минимално разстояние от центъра на Земята 
трябва да се намира малко сферично тяло с плътност, равна на лунната (𝜌𝑚 = 3300 kg/m3), така 
че да не се разпадне под действие на приливните сили, създавани от Земята. 
 
Задача 5. Затъмнения. С цел датиране на исторически събития често се определят датите и 
местата на минали слънчеви затъмнения. Въртенето на Земята обаче се забавя и слънчевите 



затъмнения не се случват там, където предвижда модел, според който Земята се върти със 
сегашната си ъглова скорост. През кой век е имало затъмнение в Париж (𝜆 = 0°, 𝜑 = 45°) 
вместо в Крим (𝜆 = 34°, 𝜑 = 45°)? Дължината на денонощието се увеличава с 16 милисекунди 
на хилядолетие. (IAO2004-αβ) 
 
Задача 6. През тунел. Намираме се някъде на далечна планета, която може да приемем за 
идеално сферична и еднородна. Искаме да изстреляме снаряд до антипода ни, тоест до 
диаметрално противоположната ни точка от планетата. От нас до антипода е прокопан тунел 
през центъра на планетата. Да се докаже, че ако пуснем снаряда по тунела без начална скорост, 
той ще достигне антипода за същото време, за което би го достигнал, ако бе изстрелян около 
планетата по кръгова орбита с първа космическа скорост. 
 
Задача 7. Звездно трио. Три звезди, всяка от които има маса 𝑀, се намират във върховете на 
равностранен триъгълник със страна 𝐿. Те се движат по кръгови орбити около общия си център 
на масите под действие на гравитационните сили, които си оказват. Намерете орбиталния 
период на системата 𝑇. 
 
Задача 8. Въже. Два еднакви спътника с маси 𝑚 са съединени с неразтегливо въже с дължина 𝑙. 
Спътниците обикалят по кръгови орбити около Земята един над друг, т.е. винаги се намират на 
права, минаваща през центъра на Земята. Разстоянието между центъра на Земята и средата на 
въжето е 𝑟. Намерете силата на опън на въжето. (МосАО2000-II-10/11) 
 
Задача 9. Дължина на деня*. Поради влиянието на Луната въртенето на Земята постепенно се 
забавя, с което продължителността на денонощието се увеличава с 16 милисекунди за всяко 
хилядолетие. Но освен това се наблюдават значителни вариации на тази продължителност в 
рамките на няколко години. На графиката са представени тези така наречени “субдекадни” 
вариации за последните 50 години (по вертикалната ос отклоненията са в милисекунди). 
Според една от теориите единствената причина за субдекадните вариации е колебанието на 
нивото на световния океан. В рамките на този модел определете отклонението в нивото на 
световния океан Δℎ като функция на отклонението в продължителността на денонощието Δ𝑇. 
Пресметнете Δℎ за периода от 1995 до 2003. (IAO2016-α) 
 
 
 
 
 
 
 
 
Задача 10. Точки на Лагранж. Около звезда с маса 𝑀1 по кръгова орбита обикаля планета с 
маса 𝑀2. Разстоянието между центровете на звездата и планетата е 𝑑.  

• Намерете разстоянията от центъра на масата на системата до звездата 𝑎1 и до планетата 
𝑎2. 

• Намерете ъгловата скорост 𝜔, с която звездата и планетата обикалят около центъра на 
масата на системата. 

• В пространството около избраната система звезда-планета съществуват пет точки (точки 
на Лагранж), в които ако се намира трето тяло с маса 𝑚 < 𝑀2, движещо се с постоянна 
скорост, то ще остава неподвижно спрямо планетата и звездата. Три от тези точки лежат 
на правата звезда-планета. Ако 𝑀2 ≪ 𝑀1 и допуснете, че разстоянието от тези точки до 
центъра на масата на системата звезда-планета е близко до 𝑎2, т.е. може да се представи 
във вида 𝑎2 − 𝑥1, 𝑎2 + 𝑥2, и 𝑎2 + 𝑥3 (0 < 𝑥𝑖 ≪ 𝑎2), намерете 𝑥1, 𝑥2 и 𝑥3. 



• Изчислете 𝑥1 и 𝑥2 за 𝑑 = 1,5 × 108 km, 𝑀1 = 2 ×  1030 kg и 𝑀2 = 6 ×  1024 kg (т.е. за 
системата Слънце-Земя).  

 
Задача 11. Лунен спътник. Дадени са две 
снимки, направени от една и съща камера, 
прикачена към сателит в орбита около Луната. 
Първата снимка е направена, когато сателитът 
е близо до периселения си, а втората – когато 
той е близо до апоселения си. Оценете 
максималния възможен орбитален период на 
този спътник. Орбитата на Луната около 
Земята приемете за кръгова. (IAO2006-β) 



8. НЕБЕСНА СФЕРА   
 
географски координати 

 
Земята има почти сферична форма, но е малко сплесната откъм полюсите – полярният й радиус 
е 6357 км, а екваториалният е 6378 км. В приближение тя може да се разглежда като сфера с 
радиус 6371 км. Земята се върти от запад на изток по въображаема ос, пресичаща я в северен и 
южен географски полюс. Големият кръг (кръг върху сфера, имащ за център самия център на 
сферата), перпендикулярен на оста на въртене, наричаме екватор. Той дели Земята на северно 
и южно полукълбо, които са съответно от страните на северния и южния полюс. Малките 
кръгове, успоредни на екватора, са т.нар. паралели, а големите полукръгове, перпендикулярни 
на него, наричаме меридиани. Всяка точка лежи на определен меридиан и определен паралел. 
Това позволява чрез тях еднозначно да се дефинира положението й по Земята. Меридианът, 
преминаващ през Гринуичката обсерватория, близо до Лондон, е избран за “нулев”. Той и 
меридианът, отстоящ противоположно на него по Земята, делят Земята на източно и западно 
полукълбо. 

Положението на точка 𝑃 (вж. схемата) е 
еднозначно определено от нейните 
географски координати: географска ширина 
𝜑 и географска дължина 𝜆. Географската 
ширина φ на т. 𝑃 е мярката на по-малката от 
двете дъги, определени от 𝑃 и проекцията на  
𝑃 върху екватора (т.е. пресечната точка на 
меридиана през 𝑃 и екватора). В случая 
ширината на 𝑃 е 40 градуса северно от 
екватора. Географските ширини се отчитат от 
екватора и могат да бъдат северни за 
северното полукълбо (от 0° до 90°N, с друго 
означение от 0° до +90°) или южни за южното 
полукълбо (от 0°до 90°S или от 0° до -90°). 
Географските дължини се отчитат от 
Гринуичкия меридиан. За 𝑃 дължината е 
мярката на дъгата, определена от проекцията 
на 𝑃 върху екватора и пресечната точка на 

Гринуичкия меридиан с екватора. Географските дължини са източни за източното полукълбо (от 
0° до 180°E, или с друго означение от 0° до +180°) или западни за западното полукълбо (от 0°до 
180°W или от 0° до -180°). Географската дължина на т. 𝑃 e 60°W. Така географските координати 
на 𝑃 се определят като 40°N, 60°W или като +40°, -60°. 
 
Важни паралели по Земята са полярните и тропичните окръжности. Северната полярна 
окръжност се определя от всички точки с географска ширина 66°33’N. На север от нея има дни, в 
които Слънцето въобще не изгрява, и дни, в които то въобще не залязва. Колкото по на север 
отиваме, толкова повече стават тези дни, като на северния полюс (𝜑 = +90°) имаме 6 месеца 
постоянен ден и 6 месеца постоянна нощ. Аналогична е ситуацията на с южната полярна 
окръжност, определена от всички точки с географска ширина 66°33’S. Северната и южната 
тропични окръжности са определени от всички точки с географски ширини съответно 23°27’N и 
23°27’S. Те заключват област, в която Слънцето може да се види в зенит (право нагоре). 
Напомняме, че 23°27’ е тъкмо стойността на наклона на земната ос – обичайно той се означава с 
гръцката буква ε. 
 

 

 



съзвездия 
 
Разположението на звездите една относно друга на небето се мени изключително бавно. Това 
позволява лесно да се ориентираме с помощта на звездите. За улеснение на това в миналото 
звездите били обединени в групи, наречени съзвездия, които се обозначавали с имена на 
животни (напр. Голяма Мечка, Лъв, Дракон), имена на герои от гръцката митология (напр. 
Касиопея, Андромеда, Персей) или просто названия на предмети, които напомняли на 
фигурите, образувани от звездите (напр. Везни, Стрела, Триъгълник). Това е особено полезно, 
тъй като по цялото небе са видими с просто око около 6000 звезди, т.е. в даден момент от 
време с невъоръжено око се виждат половината на това, или 3000 звезди.  
 
От 17 в. отделните звезди от съзвездията започнали да се означават с букви от гръцката азбука 
(напр. α Лисичка, γ Воловар, μ Цефей…), като по-ярките звезди от дадено съзвездие в повечето 
случаи се означавали с по-предни букви. Била въведена и числова номерация, която се 
ползвала за по-слабите звезди от съзвездията (т.к. гръцките букви са ограничен брой), 
например 34 Южна Корона, 42 Муха. Тези означения се ползват и досега. Отделно от тях, най-
ярките звезди са известни и със собствени имена – α Голямо Куче е Сириус, α Колар е Капела, β 
Персей е Алгол и така нататък. Границите на съзвездията били по-скоро условни до 1922 
година, когато били заменени с ясно определени дъги по небето, разделящи небето на 88 
участъка, всеки съответстващ на едно от съвременните съзвездия. На картата по-долу са 
показани за илюстрация очертанието и границите на известното съзвездие Голяма мечка, а 
също и латинските наименования на някои звезди в него. 

Наименованията на съзвездията се срещат не само на български, а и на латински (напр. Aquila, 
Pegasus, Cancer). Означенията на звездите с гръцка буква и латинско име на съзвездие се 
наричат Байерови означения (напр. ρ Aquilae, π Pegasi, θ Cancri). Те обикновено се представят в 
съкратена форма, която ползва трибуквени съкращения за съзвездията (π Pegasi става π Peg). 
 
видими движения на светилата 
 
При наблюдение на звездното небе в течение на няколко часа лесно се забелязва, че 
небосводът като едно цяло (с всичките намиращи се на него светила) плавно се върти около 
въображаема ос, наречена небесна ос. Това движение се нарича денонощно, тъй като пълен 
оборот става за едно звездно денонощие – 23 h 56 m 04 s. Денонощното движение на звездите 
е следствие от въртенето на Земята около оста й. Неслучайно периодът на едно завъртане на 
Земята около оста й е също равен на едно звездно денонощие. Промяната в положението на 
небесните тела с времето може да се забележи на снимки с дълга експонация (фотоапаратът се 
оставя да събира светлина за дълго време) като дадената тук: 
 



• Определете продължителността на експонацията на снимката. 
 
Гледано от нашите географски ширини, повечето звезди изгряват от източната страна на 
хоризонта, “изкачват се” до някаква най-висока точка от пътя си, след което “се спускат” и 
залязват от западната страна на хоризонта. При това за даден наблюдателен пункт всяка звезда 
винаги изгрява от една и съща точка от хоризонта и залязва в една и съща точка от хоризонта.  
 
Ако застанем с лице към посоката север и погледнем небето, ще видим, че някои звезди 
изгряват и залязват, а други описват пълни кръгове над хоризонта, обикаляйки около една 
определена точка (т. нар. незалязващи звезди; вж. такива на снимката). Тази точка се нарича 
северен небесен полюс и се намира точно на север. За нея лесно можем да се ориентираме 
чрез α Малка Мечка (α UMi) – Полярната звезда. Тя отстои на около 45’ от северния небесен 
полюс. 
 
Слънцето и Луната, също както звездите, изгряват от източната страна на хоризонта и залязват 
на западната. За разлика от звездите, обаче, те не изгряват/залязват от една и съща точка на 
хоризонта всеки път. Лесно се забелязва с наблюдения, че с времето Луната се движи на фона 
на звездите (отделно от денонощното движение на всички светила), преминавайки от едно 
съзвездие в друго. Луната се придвижва така от запад на изток с около 13 градуса на 
денонощие, правейки един пълен кръг по небето за 27,32 дни (сидеричен период на Луната). 
По-продължителни наблюдения показват, че и Слънцето, подобно на Луната, се премества по 
небето от запад на изток, преминавайки през същите съзвездия, но с много по-малка ъглова 
скорост. 

•  Средно на колко е равна въпросната ъглова скорост? 
Съзвездията, през които преминава Слънцето с времето, са Овен, Бик, Близнаци, Рак, Лъв, Дева, 
Везни, Скорпион, Змиеносец, Стрелец, Козирог, Водолей и Риби; тези съзвездия се наричат 
зодиакални (без Змиеносец). Приложена е таблица с информация за това в кое съзвездие е 
Слънцето през дадено време от годината. Стойностите в нея трябва да се запомнят наизуст за 
олимпиадите. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Съзвездие Време Общо 
Овен 19.04 – 13.05 25 дни 
Бик (Телец) 14.05 – 19.06 37 дни 
Близнаци 20.06 – 20.07 31 дни 
Рак 21.07 – 09.08 20 дни 
Лъв 10.08 – 15.09 37 дни 
Дева 16.09 – 30.10 45 дни 
Везни 31.10 – 22.11 23 дни 
Скорпион 23.11 – 29.11 7 дни 
Змиеносец 30.11 – 17.12 18 дни 
Стрелец 18.12 – 18.01 32 дни 
Козирог 19.01 – 15.02 28 дни 
Водолей 16.02 – 11.03 24 дни 
Риби 12.03 – 18.04 38 дни 



Още в древността били известни пет светила, на небето много подобни на звездите, но 
различаващи се от тях по това, че не запазват положението си относно останалите светила, 
също както Слънцето и Луната. Това били петте видими с просто око планети – Меркурий, 
Венера, Марс, Юпитер и Сатурн. С телескопи били открити още три – Уран (1781), Нептун (1846) 
и Плутон (1930), като от 2006 година Плутон вече не се счита за планета, а за планета джудже. 
През по-голямата част от времето планетите се движат по зодиакалните съзвездия от запад на 
изток, но понякога и от изток на запад (т. нар. ретроградно движение). Това произлиза от факта, 
че планетите се движат около Слънцето и съответно движението им относно Земята е сложно. 
Вътрешните планети се движат ретроградно приблизително от максимална източна елонгация 
до максимална западна елонгация, а външните приблизително от източна до западна 
квадратура, като колкото по-близко са планетите до Земята, толкова по-неточно е това 
приближение. При вътрешни планети ретроградно движение се наблюдава винаги около долно 
съединение, а при външни – около противостояние. При това планетите описват на небето 
примки като показаните: 
 

 
 
 
 
 
 
 
 
 
 

 
Изображенията са получени с наслагване на кадри, правени през големи интервали от време. 
На тях цветовете са обърнати (такива снимки се наричат негативи). На двата негатива тук са 
указани с черно т.нар. точки на стоене – местата, в които дадена планета променя видимата 
посока на движението си. Когато планета е в точка на стоене, ъгловата й скорост по небето е 
нула. 
 
Описваните от планетите “примки” били объркващи за 
древните астрономи, тъй като не можело да бъдат 
обяснени с геоцентрична система, в която светилата се 
движат по окръжности около Земята. Била съставена 
геоцентрична система, в която планетите обикаляли по 
окръжности, наречени епицикли, чиито центрове от 
своя страна обикаляли по окръжности, наречени 
деференти. Техният център се намирал до Земята, но 
не съвпадал с нея. Такъв модел успявал грубо да 
обясни ретроградното движение (вж. схемата) и 
промяната в разстоянието между планетите и Земята, 
но в крайна сметка бил заместен с хелиоцентричната 
система. 
 
хоризонт 
 
Под понятието хоризонт могат да се разбират две неща: 

- Математически хоризонт – за наблюдател върху дадено тяло представлява равнина на 
нивото на очите, успоредна на повърхността на тялото в мястото на наблюдение. 

 



- Видим хоризонт – на практика, линията между земя и небе. Положението на видимия 
хоризонт е малко или много различно от това на математическия и зависи от фактори 
като надморска височина и атмосферни ефекти. Ако се намираме над морското 
равнище, видимият хоризонт е изместен надолу спрямо математическия, а ако сме под 
морското равнище, става обратното. Ъгълът между математически и видим хоризонт, 
т.нар. хоризонтално понижение, е означен на чертежа тук. 

Показан е наблюдател на определена надморска височина ℎ и неговите математически и видим 
хоризонт. Ясно е, че видимият хоризонт представлява линия по земната повърхност. Затова и 
съществува понятието разстояние до хоризонта – разстоянието от наблюдател до видимия му 
хоризонт по допирателните наблюдател-Земя (ако мястото на наблюдение е на Земята). 
Математическият хоризонт е равнина в пространството. Обикновено в задачите се счита, че 
двата хоризонта съвпадат – когато се намираме на морското равнище, разликата в положенията 
им е много малка и зависи само от височината на наблюдателя. 

• Да приемем, че сме високи ℎ = 1,8 m. Ако стоим на единия бряг на река и не виждаме 
отсрещния, колко най-малко е широка реката? 

 
небесна сфера 
 
За изчисляване на видимите положения на телата по небето (а не абсолютните положения в 
пространството) разстоянията до телата не са ни нужни. Поради това е възприето в 
астрономията да се работи с небесна сфера. Тя представлява геометрично преобразование, при 
което небето се проектира върху сфера с произволен радиус и център наблюдателя. Небесната 
сфера се върти от изток на запад, заедно с всички светила, проектирани на нея, с период едно 
звездно денонощие. Така тя възпроизвежда денонощното движение на светилата, което се 
наблюдава на небето. По небесната сфера са фиксирани характерни “ориентири”под формата 
на точки, кръгове и прави, по отношение на които стават измерванията на положенията на 
небесните тела. 
 
хоризонтални координати 
 
Чертежът илюстрира как може да стане еднозначно определяне на 
положението на дадена звезда 𝑀 по небесната сфера с помощта 
на две координати, свързани с математическия хоризонт 𝑁𝑆. На 
чертежа наблюдателят е означен с 𝑂, с 𝑍 е обозначен зенитът, а с 
𝑍’ е обозначен надирът, който представлява направлението право 
надолу за наблюдателя. Математическият хоризонт на чертежите 
на небесната сфера се определя като окръжност с център 𝑂 и точки 
по нея 𝑁 и 𝑆, които съответстват на направленията север и юг (на 
небесната сфера направленията се проектират като точки). 𝑁𝑆 
разделя небесната сфера на видима и невидима за наблюдателя 
небесна полусфера – ще може да се виждат звездите от страната 
на 𝑍, но не и тези от страната на 𝑍’. 



Нека разгледаме звездата 𝑀 в определен момент, с нейната съответна проекция върху 
математическия хоризонт 𝑀’. Звездата ще мени положението си относно хоризонта с времето 
поради денонощното въртене на небесната сфера, но ние работим с фиксиран във времето 
момент. В него положението на 𝑀 може да се определи с две координати, аналогични на 
географските – височина и азимут. Височината ℎ е аналогът на географската ширина – измерва 
се от математическия хоризонт и има положителен знак във видимата небесна полусфера и 
отрицателен в невидимата, като абсолютната й стойност се мени от нула градуса (за звезди на 
хоризонта) до деветдесет градуса (за звезди в надира и зенита). На чертежа височината на 𝑀 
има мярка, равна на тази на дъгата между 𝑀 и 𝑀’ през 𝑍 и 𝑍′ (по-малката от двете възможни).  
 
Другата координата, азимут 𝐴, е аналог на географската дължина. Азимутът на 𝑀 е мярката на 
дъгата между 𝑁 и проекцията 𝑀’, измерена по часовниковата стрелка с начало 𝑁 (вж. чертежа). 
Така азимутът може да приема стойности от 0° до 360° – за точката север той е 0°, азимутът на 
точката изток е 90°, този на точката юг е 180°, на точката запад е 270° и така нататък. Може да 
преценим по чертежа на око, че 𝑀 има приблизителни координати 𝐴 = 230°, ℎ = +40°. 
Височината и азимутът се използват в т.нар. хоризонтална координатна система, а самите те се 
наричат хоризонтални координати. Към тези координати също може да причислим и т. нар. 
зенитно отстояние 𝑧, ъгълът, на който е отдалечено от зенита тяло по небесната сфера. За 𝑀 на 
чертежа зенитното отстояние се изразява с ∢𝑀𝑂𝑍, тоест с мярката на по-малката дъга между 𝑀 
и 𝑍. Зенитното отстояние на светилата във видимата небесна полусфера варира между 0° и 90°, 
а на тези в невидимата – между 90° и 180°. За всяко светило в даден момент е вярно, че 𝑧 + ℎ =
90° (отчетено e, че височината е отрицателна под хоризонта). 
 
Поясняваме, че азимутът може да бъде геодезичен и астрономически (досега ползвахме 
първия). Геодезичният азимут се отчита с начална точка север, а астрономическият с начална 
точка юг, като всичко останало е аналогично. Така звездата 𝑀, например, има астрономически 
азимут 𝐴′ = 230° − 180° = 50°. В задачите по астрономия обикновено се ползва геодезичен 
азимут. 
 
екваториални координати 
 
Обсъдихме в началото, че небосводът се върти спрямо т.нар. небесна ос. Разположението на 
небесната ос по небето за даден наблюдател се определя само от неговото местоположение по 
Земята. Затова е удобно да работим с координатна система, свързана с тази ос – екваториална 
координатна система. 



Небесната ос стандартно бележим с 𝑃𝑃’, като 𝑃 е северният небесен полюс (забележете, че на 
чертежа той е именно на север от зенита), а 𝑃’ е южният небесен полюс, намиращ се в 
съзвездието Октант. В 𝑃′, аналогично на 𝑃, нямаме денонощно движение на светилата, защото 
той лежи на небесната ос. Големият кръг (т.е. кръгът през центъра) по небесната сфера, 
перпендикулярен на небесната ос, наричаме небесен екватор 𝑄𝑄’. Небесният екватор пресича 
математическия хоризонт в точки 𝐸, 𝑊 – изток и запад. Той разделя небесната сфера на две – 
на северна небесна полусфера откъм 𝑃 и на южна небесна полусфера откъм 𝑃’. На чертежа 
точките 𝑁, 𝑃, 𝑍, 𝑄’, 𝑆, 𝑃’, 𝑍’ и 𝑄 лежат на една окръжност, която се нарича небесен меридиан (за 
разлика от меридианите по Земята, той не е полуокръжност). На чертежа неговата равнина 
лежи ”в плоскостта на листа хартия”. Небесната сфера може да се построи и гледано под 
някакъв друг ъгъл, но е най-удобно небесният меридиан да стои срещу нас. 
 
Денонощното движение на звездите става по денонощни паралели, успоредни на небесния 
екватор и съответно перпендикулярни на небесната ос. За звездата 𝑀 на чертежа денонощният 
паралел е 𝐴𝐴’. Тъй като целият 𝐴𝐴’ е във видимата небесна полусфера, звездата 𝑀 е 
незалязваща за наблюдателя 𝑂. Отстоянието на всяка една звезда от небесния екватор и 
небесните полюси е винаги едно и също. Отделно от това е видно, че това колко време една 
звезда ще стои над хоризонта ще зависи от това отстояние. Движението на звездите става с 
период 23 h 56 m 04 s от изток на запад, т.е. по часовниковата стрелка на чертежите.  
 
Съгласно с чертежа, с денонощното движение звездите променят височината си, като точката, в 
която достигат най-голяма височина, се нарича точка на горна кулминация (𝐴’ за звездата 𝑀), а 
точката, в която се достига най-малка височина, е точка на долна кулминация (𝐴 за звездата 𝑀). 
Местата на долна и горна кулминация за всяко едно светило са пресечните точки на 
денонощния му паралел с небесния меридиан. 
 
На дадения чертеж 𝛾 e пролетната равноденствена точка – точката по небето, където Слънцето 
се намира в деня на пролетното равноденствие. Тя има фиксирано място по небесната сфера и 
положенията на звездите спрямо нея не се променят (може да се каже, че и тя участва в 
денонощното въртене на небесната сфера). Това е вярно и за есенната равноденствена точка 𝛺. 
Тя отстои на 180° от 𝛾 и е мястото по небето, на което Слънцето се намира при есенно 
равноденствие. В днешно време равноденствените точки са в съзвездията Риби (пролетна) и 
Дева (есенна). 
 
Съществуват две системи екваториални координати – първа и втора екваториална, като всяка 
от двете си служи с две координати. Първа екваториална използва деклинация 𝛿 и часов ъгъл 
𝑡, докато втора екваториална използва деклинация 𝛿 и ректасцензия 𝛼. Деклинацията на една 
звезда е равна на отстоянието й от небесния екватор (то остава едно и също с времето). 
Деклинацията приема стойности от 0° до +90° за светила в северната небесна полусфера и 
стойности от 0° до -90° за светила в южната небесна полусфера. За звездата 𝑀, например, тя е 
равна на ∢𝑀𝑂𝑀′′ (𝑀’’ – проекция на 𝑀 върху небесния екватор), тоест мярката на по-малката от 
двете дъги между 𝑀 и 𝑀′′. На око може да преценим въпросната деклинация като 𝛿 = +30°.  
 
Часовият ъгъл на дадено светило представлява отстоянието на проекцията му върху небесния 
екватор от точката 𝑄’, отчетено по посока на въртенето на небесната сфера, започвайки от 𝑄’. 
Измерва се в предимно в часове, а по-рядко и в градуси, като варира 0 h до 24 h (тук часовете са 
единица за ъгъл, а не за време; 1 h ⇔ 15°). Преценено на око, 𝑀 има часов ъгъл 𝑡 = ∢𝑄′𝑂𝑀′′ =
3 h ⇔ 45° (само в момента на наблюдение, отразен на чертежа). Часовият ъгъл показва колко 
време е минало от последната горна кулминация на някакво тяло. Той се мени поради 
движението на Земята около оста й. В даден момент разликата в часовите ъгли на едно и също 
тяло за два наблюдателни пункта е равна точно на разликата в географските дължини на тези 
два пункта. 



Ректасцензията за дадено светило представлява отстоянието между проекцията му върху 
небесния екватор и пролетната равноденствена точка 𝛾. Отчита се от 𝛾, обратно на посоката на 
въртенето на небесната сфера (на чертежите – обратно на часовниковата стрелка). 
Ректасцензията се мени от 0° до 360°, тоест от 0 h до 24 h. На чертежа ректасцензията на 𝑀 
представлява ∢𝛾𝑂𝑀′′ (или мярката на по-малката дъга 𝛾𝑀′′), което на око може да преценим 
като 𝛼 = 6 h = 90°. Тъй като пролетната равноденствена точка заедно със светилата участва в 
денонощното въртене на небесната сфера, ректасцензията на звездите е постоянна. Така във 
втора екваториална система и двете координати не се менят с времето. Именно в това е и 
нейното удобство. Обикновено под “екваториални координати” се разбира координати във 
втора екваториална система. 

• Изразете в градуси ъгъл с мярка 10 h 48 m 15 s.   

• Каква е ректасцензията на есенната равноденствена точка?  

• Какъв е часовият ъгъл на звезда в долна кулминация? 

• Звезда се намира на небесния меридиан. Какъв азимут може да има тя в този момент? 
 
положение на екватора по небесната сфера 
 
Досега не обсъдихме какво точно определя положението на небесната ос и небесния екватор за 
даден наблюдател. Това може да определим с помощта на такъв чертеж: 

Тук е показана Земята с екватора и с двата си географски полюса 𝑃n и 𝑃s, като е нанесена и 
посоката на въртене на Земята около оста й (от запад на изток). На чертежа наблюдателят 𝑂 на 
географска ширина 𝜑 поради въртенето се придвижва по паралел с течение на денонощието, 
като така и математическият му хоризонт мени положението си. Затова видимите от 
наблюдателя в даден момент светила се променят (представете си по чертежа движението на 
математическия хоризонт заедно с движението 𝑂 по паралела). Но с течение на денонощието 
положението на направленията към небесните полюси спрямо хоризонта не се променя. Затова 
където и да се намира наблюдателят по Земята, той ще вижда движението на небесната сфера 
да става около ос 𝑃𝑃’, която е успоредна на земната. Тогава от чертежа следва ∢𝑃𝑂𝑁 = 𝜑. Така 
за всяко място на наблюдение височината на северния небесен полюс е равна на географската 
ширина (включително и в южното полукълбо, където географската ширина е с отрицателен 
знак). Тъй като небесният екватор е перпендикулярен на небесната ос по дефиниция, неговото 
разположение по небесната сфера също зависи само от географската ширина. В северното 
полукълбо 𝑃 е над хоризонта и 𝑄′ е на юг от зенита. В южното полукълбо 𝑃′ е над хоризонта и 
𝑄′ е на север от зенита. 
 



Задача 1. Изследване. Незалязващи звезди наричаме тези, чийто денонощен паралел за 
мястото на наблюдение е изцяло над хоризонта. Неизгряващи звезди са тези, за които 
денонощният паралел е изцяло под хоризонта за мястото на наблюдение. Останалите звезди за 
дадено място са изгряващи и залязващи. Намираме се на географска ширина 𝜑. От коя 
координата на звезда по небето зависи това дали тя ще е незалязваща, неизгряваща или 
изгряваща и залязваща? Изследвайте как това се определя в зависимост от тази координата. 
 
Решение:  
Пътят на звезда по небето се определя от денонощния й паралел. За географска ширина 𝜑 
положението на небесния екватор е фиксирано. А положението на даден денонощен паралел 
относно небесния екватор зависи от отстоянието му от него – деклинацията. Ще разглеждаме 
няколко случая – когато се намираме в северното полукълбо (сл. 1), когато се намираме в 
южното (сл. 2), когато сме на екватора (сл. 3) и когато сме на полюсите (сл. 4).  
 
Сл. 1 (фиг. а)): За да е една звезда незалязваща, 
трябва височината на точката й на долна 
кулминация да е над нула градуса – тогава целият 
денонощен паралел ще е над хоризонта. 
Въпросната точка се намира на небесния 
меридиан и на север от зенита, при което за да е 
над хоризонта, нейната деклинация трябва да е 
по-голяма от 90° − 𝜑. Така за незалязващите 
звезди трябва 𝛿 > 90° - 𝜑. Отчитайки, че 
деклинацията има отрицателен знак в южната 
небесна полусфера, по аналогични разсъждения 
(но този път за точката на горна кулминация) 
намираме, че за неизгряващите звезди трябва 𝛿 <
−(90°- 𝜑), т.е. 𝛿 < 𝜑 − 90°. За изгряващите и 
залязващите звезди остава 𝛿 ∈ [𝜑 − 90°; 90° − 𝜑].  
 
Сл. 2 (фиг. б)): За южното полукълбо трябва да се 
отчете, че георафската ширина има отрицателен 
знак. Прилагайки тогава разсъжденията от първия 
случай, за незалязващи звезди трябва 𝛿 < −90° −
𝜑, а за неизгряващи трябва 𝛿 > 90° +  𝜑. За 
изгряващи и залязващи звезди остава 𝛿 ∈
[−90° − 𝜑; 90° + 𝜑].  
 
Сл. 3 (фиг. в)): На екватора 𝜑 = 0°, при което и 
двата небесни полюса са на хоризонта. Тогава 𝑄 
съвпада с надира, 𝑄’ със зенита, 𝑃 с посоката 
север, 𝑃’ с посоката юг. Това означава, че няма да 
има незалязващи и неизгряващи звезди, а само 
изгряващи и залязващи. Формулите от сл. 1 и сл. 2 
за 𝜑 = 0° потвърждават това. 
 
Сл. 4 (фиг. г)): Намираме се на един от двата 
полюса. Тогава 𝜑 = ±90° и затова небесните 
полюси са в зенита и надира, а небесният екватор 
съвпада с математическия хоризонт. На полюсите 
има само една посока, в която можем да се движим – юг за северния полюс и север за южния 
полюс. Именно затова на чертежа 𝑁, 𝐸, 𝑆 и 𝑊 не са означени. На полюсите над хоризонта и под 



хоризонта стоят постоянно едни и същи звезди. Затова всички звезди са или незалязващи, или 
неизгряващи. На северния полюс незалязващи са звездите с 𝛿 > 0°, неизгряващи са тези с 𝛿 <
0°. На южния полюс е обратното – незалязващи са звездите с 𝛿 < 0°, неизгряващи са тези с 𝛿 >
0°. ∎ 

Височините на светилата в горна и долна кулминация могат да се определят просто, тъй като 
зависят само от географската ширина на наблюдателя и деклинацията на светилата. Формулите, 
свързващи височина в кулминация с ширина и деклинация, могат да се обобщят с израза ℎ =
±(90° ± 𝜑) ± 𝛿, където ℎ е височината в кулминация. Кои знаци да се ползват в даден случай 
може да се намери с точен чертеж и наблюдение по него.  

• Изчислете височината на звездата Капела (𝛿 = 46°) в горна кулминация ℎmax за 
наблюдатели на географска ширина 𝜑 = 45° и 𝜑 = −70° (да се приема, че ако няма 
изрично поставен отрицателен знак, става дума за положителна координата). 

 
еклиптика; еклиптични координати 
 
Чрез измервания в течение на годината лесно се 
забелязва, че движението на Слънцето по небето не е 
като това на другите звезди. Това се дължи на факта, 
че Земята обикаля около Слънцето, освен че се върти 
около оста си. Поради това Слънцето не участва 
единствено в денонощното въртене на небесната 
сфера, а се и движи на фона на звездите, което става 
по голям кръг от небесната сфера, преминаващ през 
границите на зодиакалните съзвездия. Този голям 
кръг, наречен еклиптика, е геометричното място на 
проекциите на Слънцето върху небесната сфера (вж. 
чертежа). Самата равнина на еклиптиката е всъщност 
равнината на земната орбита в пространството. 
 
Движението на Слънцето по еклиптиката става в посока, същата като тази на орбиталното 
движение на Земята, т.е. от запад на изток. Така движението на Слънцето по еклиптиката става 
обратно на денонощното въртене на небесната сфера. Как точно отстои небесният екватор 



спрямо еклиптиката можем да определим с такъв чертеж:  

 
Разглеждаме наблюдател на произволна географска ширина 𝜑; защриховката на чертежа указва 
равнини в пространството. Тъй като небесната ос се явява успоредна на оста на Земята (което 
вече показахме), небесният екватор също е успореден на земния. Тогава той винаги пресича 
еклиптиката под един и същ ъгъл. От схемата става ясно, че този ъгъл равен на наклона на 
земната ос към перпендикуляра на еклиптиката (т.е. към оста на еклиптиката). Самият наклон 
на земната ос обичайно се бележи с 𝜀, като 𝜀 = 23°27′. Казаното дотук се изобразява така на 
небесната сфера: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Тук 𝜀𝜀’ е еклиптиката. Тя пресича небесния екватор в 𝛾 и Ω, съответно пролетната и есенната 
равноденствена точка. Наклонена е спрямо екватора под ъгъл 𝜀 = 23°27′ (съвпадение на 
означенията). По нея Слънцето се движи приблизително равномерно от запад на изток, тоест 
обратно на часовниковата стрелка на чертежа. С 𝜋𝜋’ се бележи оста на еклиптиката. Точката 𝜋 
наричаме северен еклиптичен полюс, защото е в северната небесна полусфера; намира се в 
съзвездието Дракон. Точката 𝜋’ наричаме южен еклиптичен полюс; намира се в съзвездието 



Златна риба. Положението на еклиптиката е свързано само с това на небесния екватор, т.е. е 
свързано с географската ширина на наблюдателя. Самата еклиптика като голям кръг също 
участва в денонощното въртене на небесната сфера, т.е. тя е фиксирана спрямо звездите, 
защото се движи по небето заедно с тях. Отделните чертежи на небесната сфера всъщност 
отразяват моментни положения на еклиптиката – обикновено схемите се чертаят така, че 
точката от еклиптиката с най-голяма деклинация да лежи върху небесния меридиан.  
 
С еклиптиката е свързана еклиптичната 
координатна система. В нея двете координати са 
еклиптична дължина 𝜆 и еклиптична ширина 𝛽. 
За всяка една звезда еклиптичните координати 
остават постоянни (аналогично на 
екваториалните), защото цялата еклиптика 
участва в денонощното движение на небесната 
сфера, също както реперните точки 𝛾 и 𝛺 върху 
екватора. 
 
За дадена звезда 𝑀 (вж. чертежа) еклиптичната 
ширина е отстоянието между звездата и 
проекцията й на еклиптиката, т.е. на чертежа 
∢𝑀𝑂𝑀′′′ или мярката на дъгата 𝑀𝑀′′′ (по-малката 
от двете). Знакът й е положителен за звезди от 
страната на еклиптиката, съдържаща 𝜋, и 
отрицателен за звезди от страната на еклиптиката, 
съдържаща 𝜋′, като абсолютната й стойност 
варира между 0° и 90°. На око еклиптичната 
ширина на звездата 𝑀 от чертежа може да се прецени като 𝛽 = +35°. Еклиптичната дължина на 
звезда е координата, аналогична на ректасцензията при екваториалните координати. За дадена 
звезда еклиптичната дължина е отстоянието между пролетната равноденствена точка 𝛾 и 
проекцията на звездата върху еклиптиката, измерено обратно на посоката на въртене на 
небесната сфера, започвайки от 𝛾. Варира от 0° до 360° (или от 0 h до 24 h, ако работим с часова 
мярка). За звездата 𝑀 на чертежа еклиптична дължина се явява ∢𝛾𝑂𝑀′′′, което на око може да 
преценим като 𝜆 = 50°. Еклиптичните координати на 𝑀 тогава са 𝜆 = 50°, 𝛽 = +35°. 
 
изменение на екваториалните координати на Слънцето, Луната и планетите 
 
Да се върнем на движението на Слънцето по небето. Слънцето се движи по еклиптиката, 
правейки две последователни преминавания през 𝛾 за една тропическа година (365,2422 d). А 
еклиптиката, заедно със Слънцето по нея, участва в денонощното движение на небесната 
сфера. Може да си представим, че в краткосрочен план Слънцето се движи като обичайна 
звезда – по някакъв денонощен паралел, деклинацията на който зависи от това къде точно по 
еклиптиката е Слънцето, т.е. зависи от деня на наблюдение. С времето преместването на 
Слънцето по еклиптиката променя деклинацията му и съответно денонощния паралел, по който 
то извършва движението си за даден ден.  

• Оценете за колко време Слънцето изминава ъгловия си диаметър по еклиптиката. 
Припомняме, радиусът на Слънцето е 𝑅⊙ = 696000 km, а една астрономическа единица 

е 1,496 × 108 km. 
 
В деня на пролетното равноденствие (около 21 март) Слънцето се намира в пролетната 
равноденствена точка. Тогава денонощният паралел на Слънцето се оказва точно небесният 
екватор и слънчевата деклинация е 𝛿 = 0°. И тъй като небесният екватор се разполовява от 
математическия хоризонт, Слънцето е 12 часа над хоризонта и 12 часа под хоризонта. Това е 



вярно за всяка точка от Земята (проверете с чертежи) с изключение на двата полюса, където 
Слънцето е на хоризонта в течение на деня на равноденствие. След деня на пролетно 
равноденствие Слънцето се придвижва към 𝜀’, при което деклинацията му се увеличава. За 
северното полукълбо това означава, че височините на горна и долна кулминация се увеличават, 
при което Слънцето ще е все повече време над хоризонта за даден ден, ще изгрява все по на 
североизток и ще залязва все по на северозапад. За южното полукълбо се случва обратното при 
повишаване на деклинацията на Слънцето – то отново ще изгрява все по на североизток и ще 
залязва все по на югоизток, но това означава, че денят ще се съкращава и нощта ще се 
удължава (проверете с чертежи). 
 
Придвижването към 𝜀’ продължава до около 22 юни, когато Слънцето се оказва именно там. 
Тогава имаме лятно слънцестоене (затова 𝜀’ наричаме точка на лятно слънцестоене) и 
деклинацията на Слънцето достига максимална стойност 𝛿 = 𝜀 = 23°27′. Тогава денят е най-
дълъг за северното полукълбо и най-къс за южното. След лятното слънцестоене слънчевата 
деклинация започва да намалява, при което денят се скъсява за северното полукълбо и се 
удължава в южното. Когато Слънцето достигне есенната равноденствена точка Ω (около 23 
септември), имаме есенно равноденствие, при което 𝛿 = 0° и денят и нощта са равни по 
дължина, също както при пролетно равноденствие. След есенното равноденствие деклинацията 
на Слънцето вече придобива отрицателен знак и продължава да намалява. Изгревите и 
залезите на Слънцето стават съответно по на югоизток и по на югозапад, при което денят 
продължава да се скъсява за северното полукълбо и продължава да се удължава за южното. 
Около 22 декември Слънцето се оказва в точка 𝜀 по еклиптиката (𝜀 – точка на зимно 
слънцестоене) и деклинацията на Слънцето достига минималната си стойност 𝛿 = −𝜀 =
−23°27′. Тогава имаме зимно слънцестоене. В южното полукълбо денят достига максималната 
си дължина, а в северното – минималната. След зимното слънцестоене слънчевата деклинация 
започва да се повишава – изгревите стават по на североизток, залезите стават по на 
северозапад. Денят става по-дълъг в северното полукълбо и по-къс в южното. Когато Слънцето 
отново се окаже в 𝛾, описаното дотук се повтаря.  
 
Тук фразите зимно/лятно слънцестоене и пролетно/есенно равноденствие са използвани по 
отношение на северното полукълбо. Това кой сезон сме се определя от дължината на деня, 
което означава, че когато в северното полукълбо е лято, в южното ще е зима и обратно, а също 
и че когато в северното полукълбо е пролет, в южното ще е есен и обратно. Така зимното 
слънцестоене при нас всъщност е лятно слънцестоене в южното полукълбо. За екваториалните 
области е по-особено – на самия екватор денят и нощта винаги са равни по дължина, тъй като 
небесният екватор там е перпендикулярен на хоризонта. На географските ширини, близки до 
екватора, денят и нощта са близки по дължина през цялата година и там сезоните не са толкова 
ясно изразени, колкото в умерения пояс. Обратно, в полярните области географската ширина 
прави разликата в дължината на деня през годината толкова ясно изразена, че в някои дни се 
случва Слънцето дори да не изгрява, а в други – да не залязва. С други думи, “денонощният 
паралел” на Слънцето за някои дни от годината е като на неизгряваща звезда (целият е под 
хоризонта), а за други е като на незалязваща звезда (целият е над хоризонта). 
 
Това, че Слънцето има фиксиран денонощен паралел за всеки даден ден от 
годината е сравнително добро приближение. Но и за интервал от 1 ден Слънцето 
пак променя деклинацията си, макар и с малко. Целият път на Слънцето по 
небесната сфера за една година ще представлява “спирала”, простираща се в ъгъл 
2𝜀 ≈ 47°, която ще е силно завита, защото движението по еклиптиката става много 
по-бавно от денонощното. За звездите точките на изгрев и залез за даден ден са 
лежат точно симетрично относно точката юг, но при Слънцето това е изпълнено 
само в приближение.  
 



• Определете зоните по Земята, в които Слънцето може да се наблюдава в зенита. 
Определете и тези, за които има дни, в които Слънцето е незалязващо.  

• По пладне дължината на сянката на вертикален стълб е равна на 1/3 от неговата 
височина (вж. чертежа). В този момент деклинацията на Слънцето е 𝛿 = +14°47′. 
Намерете географската ширина на мястото на наблюдение.   

• Кога на 𝜑 = 23°27′ отвесен стълб не хвърля сянка? 
 
Орбиталните равнини на планетите сключват много малък ъгъл (т.нар. инклинация) с 
орбиталната равнина на Земята. И тъй като равнината на еклиптиката е всъщност равнината на 
земната орбита, по небето планетите ще се движат много близо до еклиптиката. Това не е 
вярно за тела като Плутон, които имат голяма инклинация на орбитата. 
 
Също като планетните орбити, лунната орбита не лежи точно на еклиптиката. Тя е наклонена 
спрямо еклиптиката под ъгъл 𝑖 = 5,145°, като я пресича в две точки – възходящ възел и 
низходящ възел. Възходящият възел е точката от лунната орбита, в която Луната се придвижва 
от страната на небесната сфера, съдържаща южния еклиптичен полюс, към страната на 
небесната сфера, съдържаща северния еклиптичен полюс. Низходящият възел отстои на 180° от 
възходящия и при него става обратното. Наклонът на лунната орбита означава, че деклинацията 
й няма да се изменя в интервал [−𝜀; 𝜀], а в интервал [−(𝜀 + 𝑖); 𝜀 + 𝑖]. Така на небесната сфера 
видимият път на Луната се оказва фиксиран по отношение на еклиптиката голям кръг, наклонен 
спрямо нея под ъгъл 𝑖 и пресичащ я във възлите. 
 
звездно и слънчево денонощие 
 
Вече споменахме, че звездното денонощие е периодът на едно пълно завъртане на Земята 
около нейната ос и съответно периодът между две едноименни (т.е. или горни, или долни) 
кулминации на произволна звезда. Дължината му е 23 h 56 m 04 s. Видно е, че в ежедневието 
не ползваме него. Работи се с денонощие, равно на 24 h 00 m 00 s, което наричаме слънчево 
денонощие. То представлява периодът между две едноименни кулминации на Слънцето. За 
неговата стойност влияе и орбиталният период на Земята. На чертежа е показана е Земята, 
гледана откъм северния еклиптичен полюс в две положения по орбитата си, като тя се 
премества от първото до второто положение за едно звездно денонощие. В първото положение 
за наблюдател в точка 𝐴 ще е пладне, т.к. за него 
Слънцето достига максимална височина (каква 
точно височина вече зависи от географската 
ширина). След едно звездно денонощие за 
наблюдателя в точка 𝐴 (вж. второто положение на 
Земята) положението на звездите в небето ще е 
отново същото. Но тогава за него няма да е пладне. 
Докато стане пладне за него, Земята ще трябва да 
“довърти” някакъв ъгъл, така че т. 𝐴 да съвпадне с 
точката в пространството 𝐴′ Това довъртане ще 
става за период от време, доста по-кратък от едно 
звездно денонощие, затова по време на него 
положението на Земята по орбитата няма да се 
измени значително. Приближавайки земната орбита за кръгова и не отчитайки наклона на 
земната ос, можем да покажем, че  

1

𝑇⊙
=

1

𝑇∗
−

1

𝑇𝑒
 

където 𝑇⊙ е слънчевото денонощие, 𝑇∗ е звездното денонощие и 𝑇𝑒 е една тропическа година 
(слънчевото денонощие в случая може да се разглежда като синодичен период, а звездното за 
сидеричен). Замествайки в израза дължините на едно звездно денонощие и една тропическа 



година, получаваме именно 𝑇⊙  = 24 h (това е само средна стойност за слънчевото денонощие; 
по-нататък ще разгледаме това в подробност). Времето за довъртане от 𝐴 до 𝐴′ има стойност 
𝑡 = 𝑇⊙ − 𝑇∗ = 3 m 56 s. Тази разлика между звездно и слънчево денонощие води до това всеки 

ден звездите да изгряват средно с 3 m 56 s по-рано. Това означава, че с течение на годината 
нощното небе за даден час ще се променя. Звезди, които са видими над хоризонта през нощта в 
даден ден от годината, след няколко месеца ще бъдат над хоризонта през деня и няма да се 
виждат поради светлината отСлънцето. Други звезди дотогава ще са заели тяхното място на 
нощното небе.  
 
Задача 2. Изгрев. Звезда с деклинация 𝛿 =  0° изгрява точно с настъпването на новата 2015 
година. Ще се вижда ли звездата в 20 часа на 11 февруари 2015? Ако не, кога ще изгрее? Ако да, 
кога ще залезе? Атмосферните ефекти да не се отчитат. 
 
Решение: 
Звездата изгрява в полунощ на първи януари. Следващият й изгрев ще е в 23 h 56 m 04 s на 1 

януари. На 31 януари звездата изгрява 30 × 3
14

15
= 118 m по-рано от това. Затова на 11 

февруари звездата изгрява 118 + 11 × 3
14

15
= 161

4

15
 m по-рано от 23 h 56 m 04 s. Така на 11 

февруари звездата ще изгрее в около 21 часа и 15 минути. Звездата се намира на небесния 
екватор и тъй като математическият хоризонт разполовява небесния екватор, през половината 
денонощие звездата е над хоризонта, а през другата – под него. Това означава, че преди всеки 
свой изгрев звездата е била под хоризонта 12 часа. Така в 20 часа на 11 февруари звездата е под 
хоризонта, т.е. тя няма да се вижда. ∎ 
 
рефракция 
 
Преди да попаднат в очите на наблюдател, лъчите светлина от небесните тела преминават през 
земната атмосфера, при което те се пречупват. Тъй като плътността на атмосферата се 
увеличава постепенно с наближването на земната повърхност, лъчите няма да се пречупват, все 
едно че пътуват през две различни еднородни среди, а ще се пречупват по крива (вж. чертежа). 
Поради атмосферата лъчите на светилата достигат до очите на наблюдателя, отклонени на 
някакъв ъгъл спрямо началното им направление. Така за наблюдателя видимото положение на 
небесните тела е изместено нагоре от истинското. Това явление се нарича рефракция. Ъгълът 
на рефракция (𝑟 на чертежа) е равен на 35’ за светила с видимо положение на хоризонта. Този 
ъгъл намалява значително с увеличаване на височината над хоризонта. 

 
 

 
 
 
 
 
 

ЗАДАЧИ 
 
Задача 3. Изгрев на звезда в Молетай. Наблюдател в Молетай измерва, че звезда кулминира в 
2:54 и залязва в 5:45 на 8-ми септември 2013. Не отчитайте неравността на хоризонта. 

• В колко часа ще изгрее звездата на 9-ти септември 2013? 



• Приблизително в каква посока ще трябва да очаквате изгрева на звездата? Изберете 
един от следните варианти: N, NE, E, SE, S, SW, W, NW. Направете схема с обяснение. 
(IAO2013-α) 

Упътване: Молетай е град в Литва. 

 
Задача 4. Звезда изгрява. Нека една звезда, наблюдавана от град Варна (𝜑 = 43°13′), изгрява 
точно от посока изток, а друга звезда изгрява от посока север. 

• На каква височина над хоризонта ще се издигне всяка от звездите в горна кулминация. В 
каква посока по отношение на зенита ще се намират тогава те? 

• Дали звездата, която изгрява от север за град Варна, може да изгрява от север и за други 
места по земното кълбо и кои са тези места? 

• Ако наблюдаваме изгрева на двете звезди от екватора, какъв ще е азимутът на всяка от 
звездите в момента на изгрев? На каква височина над хоризонта и в каква посока ще се 
виждат те, когато са в горна кулминация? Рефракцията да не се отчита. (НАО2014-II-9/10) 

 
Задача 5. Голямата мечка. Представете си, че пътувате с кораб в океана. Отначало седемте ярки 
звезди от “черпака” на съзвездието Голяма мечка за вас са незалязващи. Една нощ обаче, 
забелязвате, че около долна кулминация някои от тях започват да се “потапят” под хоризонта. 
След няколко нощи започват да се “скриват” във водите на океана всичките седем ярки звезди. 
Разгледайте таблицата с координатите на звездите и отговорете на въпросите, като обясните 
своите отговори.  

• В коя посока пътувате?  

• На каква географска ширина ще започнат да се скриват под хоризонта част от звездите от 
“черпака” на Голямата мечка?  

• На каква географска ширина ще започнат да се скриват под хоризонта всички звезди от 
“черпака” на Голямата мечка?  

• Ако виждате звездата Алкаид на зенитно отстояние 6°26′, а от друг кораб, намиращ се на 
същата географска дължина, но на различна ширина, звездата също се вижда на зенитно 
отстояние 6°26′, то какви са географските ширини на двата кораба? (НАО2015-II-9/10) 

 

звезда ректасцензия деклинация 
α UΜa - Дубхе 11h 03m 44s 61° 45’ 
β UMa - Мерак 11h 01m 50s 56° 23’ 
γ UMa - Фекда 11h 53m 50s 53° 42’ 

δ UMa - Мегрец 12h 15m 26s 57° 02’ 
ε UMa - Алиот 12h 54m 02s 55° 58’ 
ζ UMa - Мицар 13h 23m 56s 54° 56’ 
η UMa - Алкаид 13h 47m 33s 49° 19’ 

 
Задача 6. Снежната царица. В студена зимна нощ при вас се явява Снежната царица и ви 
отвлича с вълшебната си шейна в ледения си дворец на Северния полюс. За да се освободите от 
коварната й магия, трябва да отговорите на нейните въпроси. 

• Вълшебната шейна изминава 1° по земната повърхност за една минута. Ако тръгнем от 
двореца и се движим само на юг, за колко време ще обиколим Земята?  

• Тронът на царицата е в средата на двореца, точно там, където се намира северният 
полюс. Какво трябва да се направи, така че тронът, без да се върти, да застане обърнат 
на изток?  

Какви биха били вашите отговори? (НАО2006-II-7/8) 

Задача 7. Комета на хоризонта. През 2020 г. младият астроном Десислава Жекова открива нова 
комета с орбита, лежаща в равнината на еклиптиката. На 30 септември сутринта тя наблюдава 



кометата, намираща се на малко ъглово разстояние от Слънцето. Наблюденията се провеждат в 
Астрономическата обсерватория на град Русе с координати 𝜑 = 43°50′, 𝜆 = 25°58′. 

• Намерете ъгъла, който кометната опашка сключва с хоризонта. Не отчитайте 
рефракцията. 

• Нарисувайте схема на хоризонта и ориентацията на кометната опашка с посоките на 
света. 

• Отговорете качествено как рефракцията ще повлияе на ориентацията и формата на 
кометната опашка, ако главата на кометата е на хоризонта. Отразете това на схемата. 

• Къде по Земята условията за наблюдение на кометата биха били най-благоприятни? 
(НАО2010-IV-α) 

Задача 8. Определяне на географската ширина. Теди и Миро потеглят на морско пътешествие. 
За нещастие те забравят ъгломерните си инструменти и всякакви справочни материали на 
брега, рискувайки да се загубят в безкрайната шир. Теди открива в трюма на кораба стар 
алтазимутален телескоп. Миро си спомня, че деклинацията на любимата му звезда Алрай е 78° 
и измерва разликите във височините на тази звезда в горна и долна кулминация. Разликата се 
оказва 40°. Помогнете на пътешествениците и определете каква е тяхната географска ширина. 
(НАО2008-IV-α) 
 

Задача 9. Елонгация. Венера е в максимална западна елонгация, на 47 от Слънцето. Известният 
пътешественик Борис Панайотов е открил необикновено място на Земята, където това явление 
се наблюдава в момент, когато Слънцето е точно на юг, а Венера е точно на север и е на същата 
височина над хоризонта, както и Слънцето. 

• Наистина ли се е случило това, или само в сънищата на замечтания Борис? Ако се е 
случило наистина, то къде по Земята се е намирал той? Приблизително кога през 
годината е наблюдавано явлението?  

• В горещ спор с Борис добре тренираният турист Дочко Маджаров твърди, че е 
наблюдавал някъде по планетата същата ситуация, само че Слънцето е било на изток, а 
Венера – на запад. Отговорете на същите въпроси за тази ситуация. 

Приемаме, че орбитата на Венера лежи в равнината на еклиптиката. (НАО2016-IV-α) 
 
Задача 10. Уран. Вие изследвате планетата Уран, като пътешествате в горните слоеве на нейната 
атмосфера с реактивен летателен апарат. За улеснение въвеждате уранографски координати, 
подобни на географските координати на Земята. Оста на въртете на Уран е много силно 
наклонена – ъгълът между оста на планетата и нейната орбитална равнина е само около 8 
градуса. Както и при другите планети, при движението на Уран около Слънцето, оста му на 
въртене остава успоредна сама на себе си. 

• Каква е максималната височина над хоризонта, на която ще се издига за вас Слънцето, 
ако сте на северния полюс на Уран?  

• В области с какви уранографски ширини ще можете понякога през уранианската година 
да виждате Слънцето в зенита? 

• При вашите навигационни изследвания сте установили, че като полярна звезда за 
северния полюс на Уран може да се използва звездата η Змиеносец, а на южния полюс – 
звездата 15 Орион. На 3 октомври 2014 г. Уран ще бъде в противостояние за земните 
наблюдатели. Кой от полюсите на Уран ще се вижда от Земята тогава – северният или 
южният? 

• Какъв сезон от уранианската година ще е по това време за северното полукълбо на Уран 
(онова, в което е северният полюс)? Приблизително след колко време от Земята ще 
започне да се вижда другият полюс на Уран? 

Обяснете вашите отговори. (НАО2014-III-9/10) 
 



Задача 11. Екватор, тропик и полярен кръг. На някаква сферична планета дължините на 
екватора и тропика се отнасят както дължините на тропика и полярния кръг. Определете 
максималната височина на централната звезда, гледано от полярен кръг. Пренебрегнете 
ъгловите размери на централната звезда и рефракцията. (РАО2014-IV-10) 
 
Задача 12. Пътища в небето. Когато се наблюдават от Земята, планетите описват необикновени 
пътища на фона на звездното небе. Векове наред “примките”, които описват планетите, са 
озадачавали астрономите, особено онези от тях, които са били привърженици на 
геоцентричната система. На фигурата виждате видимите пътища на две планети за определен 
период от време. Това са всъщност карти на части от звездното небе, но самите звезди не са 
нанесени, за да не се усложни фигурата.  

• Направете необходимите пресмятания и определете кои са планетите.  
В определени периоди от време планетите имат обратно или т.нар. ретроградно движение на 
фона на звездите – връщат се за малко назад от общата посока на видимо движение. За 
различните планети интервалите от време Δ𝑡, през които те имат ретроградно движение, са с 
различна продължителност.  

• Каква ще бъде стойността на Δ𝑡 за космически обекти, които са много по-далеч от 
Слънцето, отколкото най-далечните планети? (НАО2010-III-9/10) 

 
Задача 13. Противостояния и квадратури. Когато се случи Марс да бъде в съзвездието 
Скорпион, се наблюдава красива гледка. Червената планета си съперничи по блясък и цвят с 
червената звезда Антарес. Името на звездата произлиза именно от това – то идва от Анти-Арес, 
т.е. съперничеща си с Арес – древногръцкия бог на войната.  

• Ако при дадено противостояние Марс е в съзвездието Скорпион, в кое съзвездие ще 
бъде той при следващото си противостояние?  

• Колко време след едно противостояние Марс ще e в източна квадратура?  
Нека в даден момент за нас Марс е в източна квадратура и е в съзвездието Скорпион. За 
марсиански наблюдател в същия момент Юпитер е в западна квадратура.  

• В кое съзвездие ще е Юпитер за наблюдател на Земята? (НАО2015-III-7/8) 
 
Задача 14. Южен кръст. Съзвездието Южен кръст е изобразено на националното знаме на 
Австралия, което виждате на фигурата. Екваториалните координати на петте най-ярки звезди са 
следните:  

 



 
 
 
 
 
 
 

• Означете върху знамето кои са тези звезди.  

•  Вие мечтаете да видите това съзвездие. Намирате се в София на географска ширина 
42°42'. В каква посока трябва да тръгнете и какво е най-краткото разстояние, което 
трябва да пропътувате, за да стигнете до място, от което поне понякога може да се 
наблюдава цялото съзвездие?  

• Приблизително кога през годината не бихте могли въобще да видите съзвездието от това 
място?  

• Мечтата ви би могла да се сбъдне напълно, ако се озовете на място, където съзвездието 
Южен кръст е незалязващо. Къде по Земята се намират такива места?  

• На кои места по Земята Южният кръст винаги би се наблюдавал в небето обърнат 
“наобратно” спрямо начина, по който е изобразен на знамето?  

• Коя би могла да бъде ярката звезда под британския флаг вляво, която не принадлежи 
към Южния кръст? (НАО2015-III-78) 

 
 
 

 
 
 

 
 

 

 

 

звезда 𝛼 𝛿 
α Cru 12h 26m 36s – 63°05’56’’ 
β Cru 12h 47m 43s – 59°41’20’’ 
γ Cru 12h 31m 10s – 57°06’52’’ 
δ Cru 12h 15m 09s – 58°44’56’’ 
ε Cru 12h 21m 21s – 60°24’01’’ 



9. ГЕОМЕТРИЯ ВЪРХУ СФЕРА 
 
сферична тригонометрия 
 

Много задачи по небесна сфера се свеждат до решаването 
(тоест намирането на страните и ъглите) на сферични 
триъгълници посредством сферична тригонометрия. 
Сферичен триъгълник наричаме фигура по повърхността на 
сфера, образувана от пресичането на три големи кръга. 
Например, на дадения чертеж 𝐴𝐵𝐶 е сферичен триъгълник, но 
𝐷𝐸𝐹 не е, защото участва малък кръг.  
 
Сега да разгледаме сферичен триъгълник 𝐴𝐵𝐶, намиращ се на повърхността на сфера с център 
𝑂 и радиус 𝑅 (вж. схемата). Този триъгълник има ъгли 𝐴, 𝐵, 𝐶 и съответно страни 𝑎, 𝑏, 𝑐. За 
пояснение, 𝐴 е ъгълът, сключен между 𝑏 и 𝑐, 𝐵 – между 𝑎 и 𝑐, 𝐶 – между 𝑎 и 𝑏. Самите страни 𝑎, 
𝑏 и 𝑐 е прието да се представят не с линейните им размери, а с ъгловите – например, под 
мярката на 𝑏 се разбира мярката на ∢𝐶𝑂𝐴. На чертежа 𝐴𝐸 и 𝐴𝐷 са допирателни на дъгите 𝑏 и 𝑐 
в точката 𝐴, т.е. ∢𝑂𝐴𝐸 и ∢𝑂𝐴𝐷 са равни на 90°. Ъгълът между тези допирателни е равен на 
ъгъла между съответните им дъги, т.е. ∢𝐷𝐴𝐸 е равен на ъгъла 𝐴. 

Тогава според косинусовата теорема е изпълнено: 
𝐷𝐸2 = 𝐴𝐷2 + 𝐴𝐸2 − 2𝐴𝐷𝐴𝐸 cos 𝐴 
𝐷𝐸2 = 𝑂𝐷2 + 𝑂𝐸2 − 2𝑂𝐷𝑂𝐸 cos 𝑎 

След приравняване, 
𝐴𝐷2 + 𝐴𝐸2 − 2𝐴𝐷𝐴𝐸 cos 𝐴 = 𝑂𝐷2 + 𝑂𝐸2 − 2𝑂𝐷𝑂𝐸 cos 𝑎 

Сега ще използваме, че cos 𝑐 =
𝑂𝐴

𝑂𝐷
=

𝑅

𝑂𝐷
 и cos 𝑏 =

𝑂𝐴

𝑂𝐸
=

𝑅

𝑂𝐸
, откъдето 𝑂𝐷 =

𝑅

cos 𝑐
 и 𝑂𝐸 =

𝑅

cos 𝑏
. 

Също така, tg 𝑐 =
𝐴𝐷

𝑅
 и tg 𝑏 =

𝐴𝐸

𝑅
, откъдето 𝐴𝐷 = 𝑅 tg 𝑐 и 𝐴𝐸 = 𝑅 tg 𝑏. Заместваме това в 

равенството с двете косинусови теореми, при което 

𝑅2 tg2 𝑐 + 𝑅2 tg2 𝑏 − 2𝑅2 tg 𝑐 tg 𝑏 cos 𝐴 =
𝑅2

cos2 𝑐
+

𝑅2

cos2 𝑏
−

2𝑅2

cos 𝑐 cos 𝑏
cos 𝑎 

Съкращаваме 𝑅2 и умножаваме двете страни по cos2 𝑏 cos2 𝑐: 
cos2 𝑏 sin2 𝑐 + cos2 𝑐 sin2 𝑏 − 2 sin 𝑏 sin 𝑐 cos 𝑏 cos 𝑐 cos 𝐴 = cos2 𝑏 + cos2 𝑐 − 2 cos 𝑏 cos 𝑐 cos 𝑎 

Използвайки тъждеството 1 − sin2 𝑥 = cos2 𝑥, преобразуваме до 
cos2 𝑏 cos2 𝑐 + cos2 𝑐 cos2 𝑏 − 2 cos 𝑏 cos 𝑐 cos 𝑎 + 2 sin 𝑏 sin 𝑐 cos 𝑏 cos 𝑐 cos 𝐴 = 0 

Делим двете страни на 2 cos 𝑏 cos 𝑐: 
cos 𝑏 cos 𝑐 − cos 𝑎 + sin 𝑏 sin 𝑐 cos 𝐴 = 0 

Така изведохме косинусовата теорема за сферични триъгълници. Според нея за всеки 
сферичен триъгълник със страни 𝑎, 𝑏, 𝑐 и ъгли 𝐴, 𝐵, 𝐶 са изпълнени равенствата 

cos 𝑎 = cos 𝑏 cos 𝑐 + sin 𝑏 sin 𝑐 cos 𝐴 
cos 𝑏 = cos 𝑎 cos 𝑐 + sin 𝑎 sin 𝑐 cos 𝐵 
cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶 



Ние доказахме единия от трите варианта, останалите два следват аналогично. От косинусовата 
теорема можем да изразим 

cos 𝐴 =
cos 𝑎 − cos 𝑏 cos 𝑐

sin 𝑏 sin 𝑐
 

Повдигаме това на квадрат: 

cos2 𝐴 =
cos2 𝑎 − 2 cos 𝑎 cos 𝑏 cos 𝑐 + cos2 𝑏 cos2 𝑐

sin2 𝑏 sin2 𝑐
 

Изваждаме двете страни от 1: 

sin2 𝐴 =
sin2 𝑏 sin2 𝑐 − cos2 𝑎 + 2 cos 𝑎 cos 𝑏 cos 𝑐 − cos2 𝑏 cos2 𝑐

sin2 𝑏 sin2 𝑐
 

sin2 𝐴 =
(1 − cos2 𝑏) (1 − cos2 𝑐) − cos2 𝑎 + 2 cos 𝑎 cos 𝑏 cos 𝑐 − cos2 𝑏 cos2 𝑐

sin2 𝑏 sin2 𝑐
 

sin2 𝐴 =
1 − cos2 𝑎 − cos2 𝑏 − cos2 𝑐 + 2 cos 𝑎 cos 𝑏 cos 𝑐

sin2 𝑏 sin2 𝑐
 

Разделяме на sin2 𝑎: 
sin2 𝐴

sin2 𝑎
=

1 − cos2 𝑎 − cos2 𝑏 − cos2 𝑐 + 2 cos 𝑎 cos 𝑏 cos 𝑐

sin2 𝑎 sin2 𝑏 sin2 𝑐
 

Дясната страна тук е симетрична спрямо 𝑎, 𝑏 и 𝑐, тоест е константна величина в зададен 

сферичен триъгълник със страни 𝑎, 𝑏 и 𝑐. Логично, на тази константа са равни също  
sin2 𝐵

sin2 𝑏
 и 

sin2 𝐶

sin2 𝑐
. 

Това означава, че за всеки сферичен триъгълник със страни 𝑎, 𝑏, 𝑐 и ъгли 𝐴, 𝐵, 𝐶 е вярно 
sin 𝐴

sin 𝑎
=

sin 𝐵

sin 𝑏
=

sin 𝐶

sin 𝑐
 

Това е синусовата теорема за сферични триъгълници.  
 
Задача 1. Деклинация. Ако приемем, че Слънцето се движи по еклиптиката равномерно, каква 
е приблизително неговата деклинация на 26.04? 
 
Решение:  
Слънцето прави една пълна обиколка по еклиптиката (360°) за една 
тропическа година, т.е. 365,2422 d. От 21.03., когато то се намира 
приблизително в пролетната равноденствена точка, до 26.04. 

Слънцето е изминало 
36

365,2422
× 360° = 35,483° по еклиптиката. 

Така на дадения чертеж дъгата 𝛾𝑆 има мярка 35,483° (използваме 
стандартни означения, като 𝑆 е положението на Слънцето на 26.04). 
Еклиптиката пресича екватора под ъгъл 𝜀 = 23,5°, т.е. в сферичен 
триъгълник 𝑄′𝛾𝜖′ ъгълът при 𝛾 е равен на 23,5°.  
 
Ще трябва да свържем дадените ни в условието величини с 
търсените величини посредством някакъв сферичен триъгълник, 
след което да решим триъгълника. В случая да построим 
меридиан през 𝑆. Този меридиан се явява половината на някакъв 
голям кръг, т.е. може да бъде част от сферични триъгълници. Нека 
меридианът пресича екватора в 𝑆′. Ъгъл 𝑆′ в сферичен триъгълник 
𝛾𝑆′𝑆 е прав, защото дъгата 𝑃𝑃′ е перпендикулярна на небесния 
екватор. А дъгата 𝑆𝑆′ е отстоянието на 𝑆 от 𝑄𝑄′, т.е. има смисъл на 
деклинация на Слънцето 𝛿. Сега по синусова теорема 

sin 𝜀

sin 𝛿
=

sin 90°

sin 𝛾𝑆
 

Така 𝛿 ≈ 13,4°. Отбелязваме, че при работа с тригонометрични 
функции закръглянето в междинните пресмятания може да внесе 
значителна грешка в крайния резултат. ∎ 



работа с малки ъгли по небето 
 
Да вземем денонощните паралели на две звезди с деклинации 0° и 𝛿 ≠ 0°. И двата паралела 
обхващат път 360°, но ако ползваме градуса в смисъл на мярка за размер, както при страните на 
сферични триъгълници, това не остава вярно – все пак е ясно, че единият денонощен паралел е 
по-голям от другия. Изолираме две дъги от паралелите, обхващащи една и съща пропорция от 
тях (вж. чертежа). Ако ъгловият размер на по-голямата е 𝑎, то ъгловият размер на по-малката ще 
бъде 𝑎 cos 𝛿. 

• Докажете този факт. За целта приемете, че небесната сфера има някакъв хипотетичен 
радиус 𝑅. 

Казаното дотук означава, че ако две звезди имат еднаква деклинация и разлика в 
ректасцензиите 𝑥 h, ъгловото отстояние помежду им по общия денонощен паралел ще е  
𝑥

24
× 360° × cos 𝛿. Ъгловото отстояние между две близки по небето звезди може да се намери с 

питагорова теорема, в която “катети” са разликата в деклинациите и разликата в 
ректасцензиите, като обаче втората е поправена за деклинацията с cos 𝛿 (𝛿 е приблизителната  
деклинация на звездите). Този способ пренебрегва кривината на небесната сфера и съответно е 
неточен за обекти, отдалечени един от друг по небето – тогава трябва да се ползва сферична 
тригонометрия. 
 
площи по сфера 
 
Ще покажем как се намира площ на сферичен триъгълник. За сферичен триъгълник с ъгли 𝐴, 𝐵, 
𝐶 стойността 𝜎 = 𝐴 + 𝐵 + 𝐶 − 180°  наричаме сферичен излишък (сборът от ъглите е различен 
за отделните сферични триъгълници). Доказва се, че площта на сферичен триъгълник върху 
сфера с радиус 𝑅 се равнява на 𝜎[rad]𝑅2. Така отношението на площта му към площта на 
неговата сфера е 𝜎/4𝜋. 
 
Радиусът на небесната сфера е произволен. Затова при сферичните триъгълници по небесната 
сфера работим с ъглова площ. Както е прието ъгловият размер да се изразява в единици като 
градуси или радиани, така ъгловата площ се изразява в квадратни градуси или стерадиани 

(квадратни радиани; един стерадиан се равнява на (
180

𝜋
)

2

квадратни градуса). Ъгловата площ на 

сфера е 4𝜋 sr и затова ъгловата площ на сферичен триъгълник е просто 𝜎 стерадиана. 
 
Задача 2. Летният триъгълник. Красивият на нощното небе Летен триъгълник е образуван от 
звездите Алтаир, Вега и Денеб. Пресметнете площта му в квадратни градуси. 
Справочни данни: 

Ректасцензия на Алтаир – 19h51m   Деклинация на Алтаир – +08° 52’ 

Ректасцензия на Вега – 18h37m    Деклинация на Вега – +38° 47’ 

Ректасцензия на Денеб – 20h41m    Деклинация на Денеб – +45° 17’ 
 



Решение: 
Въвеждаме означения 𝛼𝐴, 𝛼𝑉, 𝛼𝐷, 𝛿𝐴, 𝛿𝑉, 𝛿𝐷, 
използвайки индекс 𝐴 за Алтаир, 𝑉 за Вега и 𝐷 за 
Денеб. Нека на небесната сфера (вж. чертежа; 
ползваме стандартни означения) построим 
меридиани през Алтаир, Денеб и Вега (𝐴, 𝑉 и 𝐷) и 
разгледаме получените сферични триъгълници 𝑃𝐷𝐴, 
𝑃𝐴𝑉 и 𝑃𝐷𝑉. Ъглите им при 𝑃 са съответно 𝛼𝐷 − 𝛼𝐴, 
𝛼𝐴 − 𝛼𝑉 и 𝛼𝐷 − 𝛼𝑉. Отделно от това, 𝑃𝐷 = 90° − 𝛿𝐷, 
𝑃𝐴 = 90° − 𝛿𝐴 и 𝑃𝑉 = 90° − 𝛿𝑉. Използвайки за 
всеки от триъгълниците косинусовата теорема, 
намираме ъгловите разстояния между трите звезди: 
𝐷𝐴 = 37,98°, 𝐴𝑉 = 34,21°, 𝐷𝑉 = 23,76°. Сега 
прилагаме косинусовата теорема в 𝐷𝑉𝐴, получавайки 
за ъгъла при 𝐷 стойност 64,80°. За намирането на 
останалите два ъгъла е по-рационално да работим 
със синусова теорема. Получаваме за ъгъла при 𝐴 
стойност 40,42°, а за ъгъла при 𝑉 стойност 82,05°. 
Сферичният излишък тогава е 𝜎 = 7,27° ⇔ 0,127 rad. 
Площта на Летния триъгълник тогава е 0,127 sr. Тоест 

тя е 0,1269 × (
180

𝜋
)

2

≈ 417 квадратни градуса. ∎ 

 
Последно остана да споменем формулата за площ на сферична шапка (вж. 
схемата). Доказва се, че площта на сферична шапка, обхващаща ъгъл 𝜃 по 
сфера с радиус 𝑅, се равнява на 2𝜋𝑅2(1 − cos 𝜃). Ъгловата площ на 
сферична шапка в стерадиани съответно се дава чрез 2𝜋(1 − cos 𝜃). 

 
ЗАДАЧИ 
 
Задача 3. Вега в телескопа. Ученик се опитва да измери зрителното поле (FOV – field of view) на 
окуляра на своя телескоп, използвайки въртенето на Земята. За да направи това, той насочва 
телескопа си към Вега (𝛼 = 18,5 h 𝛿 = 39°), изключва воденето и измерва времето, за което 
Вега преминава по диаметъра на зрителното поле: 𝑡 = 5,3 min. Колко дъгови минути е 
зрителното поле на телескопа? (IOAA2009) 

 
Задача 4. Незалязващи звезди. На цялото небе с просто око са видими около 6000 звезди. 
Рефракцията на хоризонта е 35’. Намерете колко звезди стават незалязващи поради 
рефракцията за: 

• Наблюдател на северния полюс на височина 0 m (например легнал бял мечок)? 

• Наблюдател на екватора на височина 0 m (например навел се жираф)? 
Решението си придружете със схема, съдържаща всички използвани от вас означения. (IAO2010-
αβ) 

 
Задача 5. Варна – Владивосток. Източният български град Варна и източният руски град 
Владивосток се намират на почти на една и съща географска ширина. Географските дължини на 
градовете са 27°55’ E за Варна и 131°54’E за Владивосток. 

• Общата обиколка на географския паралел, на който се намират двата града, е 
приблизително 29170 км. Пресметнете разстоянието от Варна до Владивосток по този 
паралел. Как мислите, дали един пътнически самолет ще следва такъв път при полета си 
между двата града? 



• Вземете земен глобус и конец. Опънете част от конеца между двата града по 
повърхността на глобуса. Направете необходимите измервания с помощта на конеца и 
определете най-краткото разстояние между Варна и Владивосток по земната 
повърхност. (НАО2015-I-7/8) 

 
Задача 6. Два града. Какви са часовият ъгъл 𝐻 и зенитното отстояние 𝑧 на Вега (𝛿 = 38°47′) в 
Солун (𝜆1 = 1h32m, 𝜙1 = 40°37′), когато тя кулминира в Лисабон (𝜆2 = −0h36m, 𝜙2 = 39°43′)? 
(IOAA2013) 
 
Задача 7. Наблюдения на звезда. На 16 юни 2008 се правят наблюдения с просто око. 
Наблюдателят отчита, че звезда кулминира в зенита в 0h 18m UT, а в 8h 17m UT височината й 
над хоризонта е 87°12’. Намерете географската ширина на наблюдателя. (IAO2011-α) 
 
Задача 8. Гравитационно свързана система? Програмата за планетариуми “Guide” дава 
следните данни за две звезди с маси, сравними със слънчевата. 
 

Звезда 1 2 

Ректасцензия 14h29m44,95s 14h39m39,39s 

Деклинация –62° 40’ 46.14′′ –60° 50’ 22.10 

Разстояние 1,2953 pc 1,3475 pc 

Собствено движение по RA –3,776 arcsec / year –3,600 arcsec / year 

Собствено движение по DEC 0,95 arcsec / year 0,77 arcsec / year 

Собственото движение по ректасцензия е коригирано за деклинацията на звездите. По данните 
определете дали звездите образуват гравитационно свързана система. (IOAA2011) 



10. ПРЕЦЕСИЯ. КАЛЕНДАР 
 

прецесия 
 
В краткосрочен план обикновено приемаме, че земната ос е насочена в едно и също 
направление в пространството. В дългосрочен план, обаче, играе роля прецесията на земната 
ос. Тя представлява промяна на направлението на земната ос в пространството с период 25800 
юлиански години (всяка такава е точно 365,25 d). Оста описва конус с връх в центъра на Земята 
и ъгъл при върха 2𝜀 = 47°, като това става в посока, обратна на тази на движението на Слънцето 
по еклиптиката. Прецесията се дължи на това, че Земята не е перфектна сфера, а е сплесната 
откъм полюсите. Това поражда приливни сили, основно от Луната и Слънцето, до по-малка 
степен и другите планети. Периодът на прецесия е относително постоянен. 
  
 

 
 
Прецесията оказва значителен ефект върху облика на небето. Ясно е, че промяната на 
направлението на земната ос в пространството съответства и на промяна на положението на 
небесната ос (вж. чертежа). На небето оста 𝑃𝑃′ прецесира относно оста на еклиптиката, като при 
това небесните полюси (северен/южен) ще “обикалят” около еклиптичните (северен/южен), 
винаги отстоейки на 𝜀 = 23,5° от тях.  

• Намерете екваториалните координати на еклиптичните полюси. 
С времето полярните звезди ще се променят – конфигурацията на звездите една спрямо друга 
се запазва, но се мени положението на небесната ос, съответно и това на небесния екватор. 
Така прецесията променя и екваториалните координати на светилата. Астрономите 
традиционно работят с екваториални координати, затова прецесията се явява неудобна, 
колкото и бавно тя да променя координатите. Поради това днес е прието в астрономическите 
каталози да се използват екваториалните координати на светилата такива, каквито са били в 12 
часа на Гринуичкия меридиан на 01.01.2000 година. Това са т.нар. координати по епоха J2000.  
 



 
Следствие от прецесията е също изменението на положението на равноденствените точки 
спрямо звездите. Да разсъждаваме за пролетната равноденствена точка, като казаното за нея 
ще е вярно и за есенната равноденствена точка, а също и за точките на лятно и зимно 
слънцестоене. Равноденствена точка е мястото, където се намира Слънцето по небето в момент, 
в който оста на Земята е разположена перпендикулярно на линията Земя-Слънце. Но самото 
положение на оста се променя. Така се оказва, че поради прецесията положението на Земята по 
нейната орбита в момента на пролетно равноденствие се мени, съответно и мястото на точката 
на пролетно равноденствие спрямо звездите (вж. чертежа за пояснение). 
 

 
 
Става ясно, че периодът между две преминавания на Слънцето през пролетната 
равноденствена точка (тропичeска година) е различен от сидеричния период на Земята (т.нар. 
звездна година). Продължителността на двата периода е съответно 365,2422 d и 365,2564 d. 
Първият е доста близък по стойност до средната продължителност на годината в календара, 
който ползваме в ежедневието, григорианския. 
 
При григорианския календар правилата са следните: 

- годините, които се делят на 400, са високосни;  
- всички останали, които се делят на 100, са 

невисокосни;  
- оставащите, делящи се на 4, са високосни; 
- останалите са невисокосни. 

 
 

• Определете средната 
продължителност на годината в 
григорианския календар. 
 



календар 
 
Ако в календара, който ползвахме, имаше дори и малко отклонение на средната стойност на 
годината от тропическата година, щеше да има значителни неудобства, както показва пример от 
миналото, юлианският календар, с неговата средна продължителност на годината от 365,25 d 
(всяка деляща се на четири година е високосна, останалите са невисокосни). 
 
Католиците празнуват Великден в неделята след първото пълнолуние след пролетното 
равноденствие. Този факт е станал основание за това папа Григорий XIII през 1582 г. да поръча 
създаването на нов календар, който да замени юлианския. Разликата между тропическата 
година и юлианската година означавала, че с всяка година пролетното равноденствие било 
средно все по-рано и по-рано в календара (с 365,25 – 365,2422 = 0,0078 d на година). Този ефект 
бил пренебрежим в малък период от време, но с времето се натрупал, което означавало 
промяна в датата на пролетното равноденствие спрямо оригиналната (21 март), приета на 
Никейския събор от 325 година. През 1582 г. денят на пролетното равноденствие вече бил 
изместен до 11 март, т.е. десет дни разлика. Това значително променило диапазона от дати, в 
който можел Великден да попада, спрямо приетия през 325 година от ранните християни. За да 
се върне старият диапазон, Църквата внесла поправка. 
 
Тя била: 

1) след 4 октомври 1582 г. не настъпва 5 октомври, а 15-ти; 
2) от високосните години се изключват тези, които се делят на 100, но не и на 400. 

По същество, това представлява преход от юлиански към григориански календар. 
 
Първата част от поправката компенсира за натрупаната разлика между юлианските и 
тропическите години, гледано от 325 след новата ера. Втората променя календара с цел 
намаляване на отклонението за в бъдеще. 
 
Повечето западноевропейски държави приели реформата почти веднага, но България приема 
григорианския календар чак през 1916. Юлиански календар продължава да се използва на 
някои места, въпреки че разликата между него и григорианския продължава да се увеличава (за 
момента е 13 дни). Православните страни, например, все още празнуват Великден по стар стил, 
т.е. съобразявайки се с юлианския календар. Така се оказва, че Великден в православните 
страни се празнува в неделята след първото пълнолуние след датата, отстояща на 13 дни след 
пролетното равноденствие. 
 
Допълнително ще отбележим, че докато църквата приема датата на пролетно равноденствие 
винаги за фиксирана на 21 март, това не е така, погледнато астрономически (същото се отнася 
за есенното равноденствие и за слънцестоянията). Причината е, че отделните години от 
григорианския календар имат различни отклонения от тропическата година. Например, ако в 
дадена година (2016) лятното слънцестоене е на 21 юни в 01:34, следващата година то ще е на 
21 юни в 07:24 заради разликата от 365,2422 − 365 = 0,2422 d. Изглежда, че с всяка година то 
напредва, но то евентуално ще се върне назад – например, през 2019 лятното слънцестоене е 
на 21 юни в 18:54, но през 2020 ще е на 20 юни в 21:44 поради разликата 365,2422 –  366 =
 −0,7578 d. Игнорирайки малката разлика от 0,0003 d между тропическата година и средната 
година в григорианския календар, промяната на датите на слънцестоянията и равноденствията 
е периодична (вж. графиката на изменението на датата на лятното слънцестоене). 



 
Диапазоните, в които равноденствията/слънцестоянията могат да попадат, са следните: 

- пролетно равноденствие – от 19 до 21 март; 
- лятно слънцестоене – от 20 до 22 юни; 
- есенно равноденствие – от 21 до 24 септември; 
- зимно слънцестоене – от 20 до 22 декември. 

 
Сравнителната им фиксираност в календара (в рамките на 2-3 дни) и прецесията заедно водят 
до още един ефект. Движението на пролетната равноденствена точка спрямо съзвездията 
означава, че в деня на пролетното равноденствие Слънцето ще е на различно място по небето с 
годините, т.е. датите, за които Слънцето ще е в дадено зодиакално съзвездие, постоянно се 
променят. Тъкмо затова стандартното означение за пролетната равноденствена точка е 𝛾 (от 
подобието със зодиакалния знак на съзвездието Овен), въпреки че тя в днешно време е в Риби. 
Аналогично и със знака 𝛺 за есенната равноденствена точка, който наподобява зодиакалния 
знак на Везни, въпреки че точката днес е в Дева.  
 
Задача 1. Три празника. През 2005 в Русия бе въведен Денят на руските студенти, отбелязван на 
25 януари. Изборът на тази дата бил обоснован с това, че в същата година на тази дата Руската 
православна църква отбелязала денят на света Татяна, а основаването на Московския 
университет станало тъкмо на деня на света Татяна през 1755 година. Известно е, че Руската 
православна църква ползва юлианския календар. Укажете точните дати, в които през 2155 
година ще се празнуват: 

• денят на света Татяна; 

• 400 години от основаването на Московския университет; 

• Денят на руските студенти. (СПбАО2015-II-6/7) 
 
Решение:  
Знаем, че веднага след реформата на папа Григорий през 1582г. новият календар се оказва с 10 
дни пред юлианския. Тази разлика между календарите се запазва до 1700 година, която по 
юлианския календар е високосна, а по григорианския – не; така от 1 март 1700 нататък 
разликата между календарите става 11 дни (1600 година се дели на 400, така че е високосна и 
за двата календара). Аналогично, от 1 март 1800 нататък разликата става 12 дни, от 1 март 1900 
тя става 13 дни и от 1 март 2100 нататък тя става 14 дни (2000 се дели на 4 и е високосна година 
за двата календара). Ясно е, че Руската църква празнува деня на света Татяна на 12 януари по 
юлианския календар, така че Московският университет е основан на 12 януари 1755 по 
юлианския календар, т.е. на 23 януари 1755 по григорианския. 



а) Денят на света Татяна пак ще се празнува на 12 януари 2155г. по юлиански календар, което по 
нашия календар съответства на 26 януари. 
б) 400 години от основаването на университета се честват на 23 януари 2155.  
в) Денят на руските студенти е фиксиран празник, през 2155 той пак ще се празнува на 25 
януари. ∎ 
 
нутация 
 
Дължината на тропическата година се променя в краткосрочен план поради нутацията на 
земната ос. Тя представлява малки периодични колебания в ориентацията земната ос, 
причинени от силите, действащи на Земята от Луната и Слънцето. Периодът й е 18,6 години. 
Въпреки че нутацията отклонява земната ос само с няколко дъгови секунди, това се отразява на 
продължителността на тропическата година с около 1-2 минути. 
 

ЗАДАЧИ 
 
Задача 2. Древни астрономи. Първите астрономически текстове, 
достигнали до нас, са от началото на второто хилядолетие преди 
новата ера и са написани върху глинени плочки. На една от тези 
глинени плочки е нарисувано астрономическо явление, което е 
направило впечатление на древните астрономи – Луната малко 
преди да премине пред Плеядите. Ако това събитие наистина се е 
случило преди 4000 години, то през коя част от денонощието бихме 
го наблюдавали? Кога през годината би било това? (НАО2006-II-7/8) 
 

Задача 3. Понеделник. В някаква година 1 януари се пада в 
понеделник. Намерете минималния и максималния брой години, 
които могат до изминат до следващия понеделник на 1 януари. 
(СПбАО2009-II-7/8)  
 
Задача 4. Най-ярките звезди. Кои ще са четирите най-ярки звезди на нощното небе на Чолпон-
Ата (𝜑 = 42°39′) през CL (150-ти) век сл.н.е.? Приемете, че около пет градуса над хоризонта са 
блокирани от планини. Обосновете отговора си чрез необходимите чертежи и пресмятания. 
(IAO2014-α) 
 
Задача 5. Сириус и Канопус. Поради прецесията на земната ос видимата област на небето за 
дадено място се променя с времето. Възможно ли е в Краков (𝜑 = 50,1°) в някакъв момент 
Сириус да е неизгряваща звезда, а Канопус да е изгряваща и залязваща? (IOAA2011) 

 
най-ярките звезди на нощното небе (за зад. 4 и 5) 



11. ВРЕМЕ 
 
звездно време 
 
Времето е относителна величина – стойността му се определя спрямо някакъв начален момент; 
за някаква маса може да кажем, че е 50 kg, но ако кажем, че някакво време е 50 s, веднага 
възниква въпросът “50 s спрямо какво?”. При отчитане на времето в ежедневието също ни 
трябва някакъв ориентир, за което ползваме Слънцето (около 12 h Слънцето е в горна 
кулминация и имаме пладне, около 0 h Слънцето е в долна кулминация за нас и имаме 
полунощ). Също обаче за ориентир може да ползваме и звездите, при което работим със 
звездно време. 
 
По дефиниция за даден наблюдател в някакъв момент звездното време 𝑠 е часовият ъгъл на 
пролетната равноденствена точка 𝑡𝛾 (изразен в часове, минути и секунди). Така когато 

пролетната равноденствена точка е в горна кулминация, звездното време е 0 h. Когато тя е в 
долна кулминация, звездното време е 12 h. 

• Какво ще е звездното време при подаването на есенната равноденствена точка над 
хоризонта? 

Разликата в звездните времена за два наблюдателни пункта представлява разлика в часовите 
ъгли на някаква точка по небето (в случая 𝛾), а тя от своя страна е равна на разликата в 
географските дължини на двата наблюдателни пункта. Естествено, двете равноденствени точки 
не са отбелязани с нищо на небето, поради което е най-удобно да измерваме звездно време 
именно чрез звездите. На чертежа по-долу часовият ъгъл на 𝛾 е равен на мярката на дъгата 𝛾𝑄′, 
която може да се представи като сбор от дъгите  𝛾𝑀′′ и 𝑀′′𝑄′, където 𝑀′′ е проекцията на 
звездата 𝑀 върху небесната сфера. Но 𝛾𝑀′′ се явява ректасцензия на 𝑀, а 𝑀′′𝑄′ - неин часов 
ъгъл. Затова ако в някакъв момент звезда има ректасцензия 𝛼 и часов ъгъл 𝑡, звездното време е 
𝑠 = 𝛼 + 𝑡 (сборът от дясната страна понякога може да превишава 24 h – в такъв случай 𝑠 = 𝛼 +
𝑡 − 24 h). 

• В София (𝜆 = 23°20′E) часовият ъгъл на Вега (𝛼 = 18 h 37 m) е точно 6 h 21 m. Колко ще 
е часовият ъгъл на Сириус (𝛼 = 6 h 45 m) за наблюдател в Бургас (𝜆 = 27°28′E) в същия 
момент? 



Нека разгледаме една горна кулминация на пролетната равноденствена точка. Тя става в 0 h по 
звездно време. Следващата горна кулминация става в 24 h (⟺ 0 h) по звездно време, но от 
друга страна времето между две едноименни кулминации на 𝛾 или коя да е звезда е не 24 h, а 
23 h 56 m 04 s – едно звездно денонощие. Тук противоречие няма, защото при звездното време 
часовете, минутите и секундите се дефинират не спрямо слънчевото, а спрямо звездното 
денонощие. По определение един звезден час е 1/24 от звездното денонощие, една звездна 
минута е 1/60 от звездния час, една звездна секунда е 1/60 от звездната минута. Така звездното 
денонощие трае 23 h 56 m 04 s, което е 24 звездни часа, а звездното време 𝑠 в звездни часове, 
минути и секунди е часовият ъгъл на пролетната равноденствена точка (изразен в часове, 
минути и секунди). 
 
Звездното време е непрактично, защото ежедневието е свързано с положението на Слънцето 
по небето (пладне, изгрев, залез...), а не на звездите. Поради това ползваме система за отчитане 
на време, свързана със Слънцето. 
 
средно слънчево време, местно време 
 
Преди да преминем нататък, ще отбележим, че слънчевото денонощие няма винаги еднаква 
дължина. В извеждането на дължината му в §8.: 

1) приехме, че земната орбита е кръгова; 
2) не отчетохме наклона на земната ос спрямо оста на еклиптиката. 

В §8. намерихме дължината на средното слънчево денонощие – продължителността на 
слънчевото денонощие за хипотетично Слънце, движещо се равномерно по небесния екватор 
(т.нар. средно Слънце). Периодът между две горни кулминации на средното Слънце е 
постоянен, за разлика от този за истинското Слънце. Затова е по-удобно часовниците да се 
водят спрямо средното Слънце, което всъщност не се отклонява значително от истинското 
Слънце през годината (на това отклонение ще се спрем по-нататък). Средното слънчево време 
𝑇⊙ на дадена географска дължина се дефинира с  

𝑇⊙ = 𝑡⊙ + 12 h 
Тук 𝑡⊙ е часовият ъгъл на средното Слънце. Така когато то е в горна кулминация, имаме 𝑇⊙ =
12 h, а когато то е в долна кулминация, 𝑇⊙ = 0 h. В даден момент на различните географски 
дължини средното Слънце ще има различен часов ъгъл, поради което и средното слънчево 
време ще има различна стойност. Тази стойност за даден меридиан наричаме местно време. 
Едно следствие от дефиницията за местно време (𝑇⊙ = 𝑡⊙ + 12 h) е това, че в дните на 

равноденствие Слънцето изгрява в 6 h по местно време и залязва в 18 h по местно време, 
защото в тези дни то се намира на небесния екватор (пренебрегваме преместването на 
Слънцето по еклиптиката в рамките на деня). 
 
Нека разгледаме връзката между звездно време и местно време. Двете ще имат една и съща 
стойност на дадено място при 𝑠 = 𝑇⊙, т.е. при 𝑡𝛾 = 𝑡⊙ + 12 h. За да е изпълнено това, трябва 

Слънцето да отстои на 12 h от 𝛾, т.е. да се намира при есенната равноденствена точка, което 
става в деня на есенно равноденствие (или пролетно, в зависимост от полукълбото). Така двете 
времена съвпадат около 23 септември. С всеки ден след този звездното време “напредва” с 3 m 
56 s спрямо средното слънчево (с други думи, когато хипотетичен часовник, работещ със 
звездно време, показва 24 h, друг, работещ със средно слънчево, показва 23 h 56 m 04 s). За 
точно една година звездното време ще е напреднало с точно един ден спрямо средното 
слънчево, след което всичко се повтаря (казано по друг начин, в една тропическа година броят 
звездни денонощия е с едно повече от броя средни слънчеви денонощия – съответно 366,2422 
d и 365,2422 d). 
 
универсално и поясно време 



Вече споменахме, че за различните географски дължини местното време е различно. Ако в 
ежедневието работехме с местно време, щеше да трябва да пренастройваме часовниците си 
постоянно, за да остават те точни. Явно е, че трябва да ползваме някакво стандартизирано 
време. Това може да е, например, универсалното време (UT). То представлява местното време 
на Гринуичкия меридиан (𝜆 = 0°). Ако някое събитие се е случило в 3 h 20 m UT, а друго в 4 h 15 
m UT, то второто се е случило по-късно, независимо че първото, например, може да е станало в 
18 h по местно време, а второто – в 16 h по местно време. 

• На 22 септември за 90° W Слънцето залязва. Приблизително в колко часа по UT е станало 
това? 

Универсалното време е абсолютно (еднакво навсякъде по Земята), но то, от друга страна, не 
дава никаква представа за положението на Слънцето по небето – ако знаем, че сега е 5 h UT, но 
не знаем географската дължина на някакво място, не може да кажем дали на това място ще е 
ден или нощ. 
 
Употребата и на местно, и на универсално време, има своите предимства и неудобства. 
Компромисно решение е поясното време. При него Земята се разделя на часови пояси, всеки 
обхващащ 15-градусов интервал от географски дължини и имащ свой централен меридиан. 
Стойността на поясното време във всеки часови пояс е равна на стойността на местното време 
на централния меридиан на този пояс. За часови пояс UT ± 00, например, 𝜆 ∈ [−7,5°, 7,5°]. 
Неговият централен меридиан е Гринучкият (𝜆 = 0°). За часовия пояс UT + 01 централният 
меридиан се намира на 𝜆 = 15°, а самият той обхваща 𝜆 ∈ [7,5°; 22,5°]. UT − 10 има централен 
меридиан на 𝜆 = −150°, обхващайки 𝜆 ∈ [−157,5°; −142,5°], и така нататък. В рамките на всеки 
часови пояс поясното време е приблизително показателно за положението на Слънцето по 
небето – средното Слънце кулминира на централния меридиан в 12 h, а в рамките на часовия 
пояс приблизително в 12 h (между 11:30 и 12:30, по-точно). Тъкмо в това е удобството на 
поясното време, което ползваме в ежедневието. Обръщаме внимание, че разликата в поясното 
време на две места не е равна на разликата в географските им дължини, както беше за 
разликите в местното и в звездното време. 

• Каква е разликата в показанията на часовниците на човек във Варна (𝜆 = 27°55′E) и 
човек в Ню Йорк (𝜆 = 74°00′W) на 27 ноември? А какъв час точно ще показват те в 4 h 15 
m на 27 ноември по UT? 

 
Особена е ситуацията около централния меридиан при 𝜆 = 180°. Там има не един, а два часови 
пояса, UT + 12 за 𝜆 ∈ [172,5°; 180°] и UT − 12 за 𝜆 ∈ [−180°; −172,5°]. Обикновено при 
преминаване от един часови пояс на друг преместваме часовниците си с един час напред или 
един час назад. При преминаване на меридиана с 𝜆 = 180°, обаче, местим часовниците си с 24 
часа напред (ако се движим към източното полукълбо, т.е. на запад) или с 24 часа назад (ако се 
движим към западното полукълбо, т.е. на изток). Меридиана при 𝜆 = 180° наричаме линия на 
смяна на датите. 
 
Отделните държави понякога решават да се придържат само към един часови пояс или да 
използват един часови пояс за административни области, принципно намиращи се в два или 
повече пояса. Това променя облика на часовите пояси значително (вж. картата по-долу). 
Линията на смяната на датите също е много деформирана. И все пак, определянето на часови 
пояс само според географската дължина обикновено дава верен резултат. 
 



 
лятно часово време 
 
В някои територии (цяла Европа, континентална Северна Америка и още малък брой държави) 
се спазва лятно часово време. Това представлява преместването на часовниците с един час 
напред през летните месеци (за европейските страни това трае от последната неделя на март 
до последната неделя на октомври). Там, където се спазва лятно часово време, часовите пояси 
временно се преместват, тъй като универсалното време не се влияе от тази поправка 
(например, за Великобритания поясът UT ± 00 става UT + 01 през лятото). 
 
уравнение на времето 
 
Вече споменахме, че има отклонение между истинското и средното Слънце. Това означава, че 
истинското Слънце невинаги кулминира точно в 12 h по местно време. Разликата в часовете на 
кулминациите на истинското и средното Слънце с течение на годината се изразява графично 
чрез уравнението на времето: 

Тук под “часовникът е по-бърз” се разбира, че часовникът за наблюдател на централния 
меридиан на някакъв часови пояс показва 12:00 преди горната кулминация на истинското 
Слънце. 



Уравнението на времето може да се разгледа в приближение като суперпозиция (наслагване) 
на два независими ефекта, пораждащи разлики в дължините на истинското и средното 
слънчево денонощие поради: 

1) ексцентрицитета на земната орбита; 
2) наклона на земната ос. 

Наслагването е показано на графиката по-долу, като този път уравнението на времето е 
обърнато. И двата варианта се срещат, тъй като за знака на уравнението на времето няма 
конвенция (т.е. не е определено дали то се дефинира като “час на кулминация на истинско Сл. 
минус час на кулминация на средно Сл.” или като обратното). 

 
Да забележим, че ефектът от ексцентрицитета има нули при 4 януари и 4 юли – приблизително 
дните, в които Земята е в перихелий и в афелий. Самото му извеждане изисква твърде 
задълбочени познания по орбитална механика, поради което на него няма да се спрем. Ще 
разгледаме повърхностно, обаче, ефекта от наклона на оста върху продължителността на 
слънчевото денонощие.   

 
* 
Както казахме, разглеждаме двата ефекта поотделно, т.е. при извеждането на всеки от двата не 
отчитаме другия. За извеждането на ефекта от наклона на оста това означава, че приемаме 
Слънце, което се движи равномерно по еклиптиката. Това ще дава известна грешка в 
уравнението на времето, но само от порядъка на около половин минута. 

 
Нека е изминало някакво време след пролетното равноденствие, при което Слънцето вече е 
придобило еклиптична дължина 𝜆, на чертежа изразена с дъгата 𝛾𝑆 (𝑆 – Слънце, 𝑆’ – проекция 
на Слънцето върху небесния екватор, останалите означения са стандартни). Придобитата за това 
време ректасцензия 𝛼 се дава с дъгата 𝛾𝑆′, а придобитата деклинация 𝛿 се дава с дъгата 𝑆𝑆′. В 
сферичния триъгълник 𝛾𝑆𝑆′ ъгълът при 𝛾 е 𝜀 = 23,5°, а ъгълът при 𝑆′ е прав. По синусова 
теорема sin 𝛿 = sin 𝜀 sin 𝜆 (1) и по косинусова теорема cos 𝜆 = cos 𝛿 cos 𝛼 (2) поради правия 
ъгъл. 
(1) се преобразува в cos2 𝛿 = 1 − sin2 𝜀 sin2 𝜆, а (2) в cos2 𝜆 = cos2 𝛿 cos2 𝛼. След заместване на 
(1) в (2) получаваме cos2 𝜆 = (1 − sin2 𝜀 sin2 𝜆) cos2 𝛼, откъдето имаме cos2 𝜆 − cos2 𝛼 =
− sin2 𝜀 sin2 𝜆 cos2 𝛼. Прибавяме от двете страни sin2 𝜆 cos2 𝛼, с което cos2 𝜆 +  sin2 𝜆 cos2 𝛼 −



cos2 𝛼 = cos2 𝜀 sin2 𝜆 cos2 𝛼. Лявата страна е еквивалентна на cos2 𝜆 − cos2 𝛼 (1 − sin2 𝜆) =
sin2 𝛼 cos2 𝜆, с което sin 𝛼 cos 𝜆 = sin 𝜆 cos 𝛼 cos 𝜀. Така tg 𝛼 = tg 𝜆 cos 𝜀. 
 

 

От последното уравнение се доказва, че 𝛥𝛼 = 𝛥𝜆
cos2 𝛼

cos2 𝜆
cos 𝜀, където 𝛥𝛼 и 𝛥𝜆 са изменения в 

слънчевите ректасцензия и еклиптична дължина за малък интервал от време (например едно 
денонощие) в момент, в който Слънцето има ректасцензия 𝛼 и еклиптична дължина 𝜆. 

Стойността на 𝛥𝜆 за кое да е денонощие е равна на 
 360°

365,2422 
= 0,9856° (както вече споменахме, 

тя реално е променлива, но я приемаме за постоянна). 
 

Да разгледаме произволна горна кулминация на Слънцето. Ако Слънцето не се движеше по 
еклиптиката, следващата горна кулминация щеше да стане след точно едно звездно 
денонощие. Но това не е така – на чертежа се вижда, че Слънцето се мести по ректасцензия. За 
едно звездно денонощие Слънцето се е преместило на някакъв ъгъл по ректасцензия и трябва 
небесната сфера да довърти този ъгъл, за да може Слънцето пак да се окаже в горна 
кулминация. Средната стойност на ъгъла е 𝛥𝜆 = 0,9856°, което съответства на 3 m 56 s, 
откъдето следва, че средната стойност на слънчевото денонощие е 23 h 56 m 04 s + 3 m 56 s = 24 
h.  

 
Но в общия случай ъгълът, който трябва да се довърти, не е 𝛥𝜆, а 𝛥𝛼. А от формулата по-горе се 
вижда, че при равноденствията (за които 𝛼 = 0°, 180° 𝜆 = 0°, 180°) 𝛥𝛼 = 𝛥𝜆 cos 𝜀 = 0,9038° ⇔
3 m 37 s. Така продължителността на слънчевото денонощие при равноденствията е с около 20 
секунди по-малка от тази на средното слънчево денонощие. При слънцестоянията (за които 𝛼 =

90°, 270° и 𝜆 = 90°, 270°) е по-интересно. За тях 
cos2 𝛼

cos2 𝜆
=

0

0
. Ще разрешим “проблема” по следния 

начин. cos2 𝛼 може да се представи като
1

(sin2𝛼 + cos2 𝛼)/ cos2 𝛼
, т.е. като 

1

1+tg2 𝛼
. Аналогично с cos2 𝜆. 

Тогава 𝛥𝛼 = 𝛥𝜆
1+tg2 𝜆

1+tg2 𝛼
cos 𝜀. Заместваме в това уравнение вече изведеното tg 𝜆 =  

tg 𝛼

cos 𝜀
, с което 

𝛥𝛼

𝛥𝜆
=

cos2 𝜀+tg2 𝛼

1+tg2 𝛼

1

cos 𝜀
. Когато 𝛼 се доближава до 90°, tg2 𝛼 се доближава към безкрайност. 

cos2 𝜀+tg2 𝛼

1+tg2 𝛼
 е по-малко от 1, защото cos2 𝜀 < 1. Но когато 𝛼 е близък до 90°, cos2 𝜀 и 1 са 

пренебрежимо малки в сравнение с tg2 𝛼 и числителят на дробта ще е със съвсем малко по-
малък от знаменателя. Разликата между тях ще се стопява с увеличаването на 𝛼, и при 𝛼 = 90° 

(или 270°, всичко е аналогично) имаме 
cos2 𝜀+tg2 𝛼

1+tg2 𝛼
= 1, което означава, че при слънцестоене 

𝛥𝛼 =
𝛥𝜆

cos 𝜀
= 1,0747° ⇔ 4 m 18 s. Интересно е, че това е по-голямо по стойност от 𝛥𝜆. В 

сферичната геометрия е възможно проекцията на някакъв размер да е по-голяма от самия него. 
И така, дължината на слънчевото денонощие при слънцестоене е с около 20 секунди по-голяма 
от тази на средното слънчево денонощие. 



Всичките разсъждения дотук показват как се получава компонентата на уравнението на 
времето, породена от наклона на оста. На пролетното равноденствие истинското Слънце 
съвпада със средното (по дефиниция). Тогава истинското Слънце избързва спрямо средното, т.е. 
часовникът е по-бавен. Избързването на истинското Слънце се натрупва с изминаването на 
дните, но самото избързване става все по-бавно, като на средата между пролетното 
равноденствие и лятното слънцестоене то спира, след което вече се превръща в изоставане, 
защото истинското слънчево денонощие става по-дълго от средното. Това забавяне става все 
по-бързо до лятното слънцестоене. Оттам нататък всичко е аналогично. 
/* 
 
аналема 
 
Уравнението на времето е причината Слънцето да няма еднакъв часов ъгъл по едно и също 
местно време в различните дни от годината. Затова ако снимаме Слънцето по едно и също 
време всеки ден и насложим изображенията едно върху друго, няма да получим линия, 
съответстваща на меридиан по небесната сфера, а ще получим фигура, подобна на осморка, 
наречена аналема (вж. снимката). Компонентата й по дължина е следствие от изменението на 
деклинацията на Слънцето през годината (затова по дължина от край до край всяка аналема 
обхваща 2𝜀 = 47°), а компонентата й по ширина се дължи на уравнението на времето (вж. 
схемата).  

 
 

 
Видът на аналемите е 
различен в зависимост от 
това къде и в колко часа 
по местно време са 
снимани. Географската 
ширина влияе по няколко 
начина. Например, това 
дали сме в северното или 
южното полукълбо 
определя дали малката 
част на осморката ще е 
отгоре или отдолу.  
Ако пък сме зад 
полярните окръжности, 
няма да може да виждаме 
цялата осморка, защото 
някои дни Слънцето няма 
да е над хоризонта. 



Местното време влияе на ориентацията на “оста” на аналемата, която се явява някакъв 
меридиан по небесната сфера. На други планети аналемите могат да изглеждат съвсем 
различно, защото формата им зависи от уравнението на времето, имащо различен вид за 
отделните планети. 
 

юлиански дни 
 
Поради сложностите в системите за отчитане на време, включително използвания в 
ежедневието календар, в астрономията често се борави с друга, опростена система – 
юлианските дни (JD). За началото на юлиански ден 0 се приема 12 h по универсално време на 1 
януари 4713 пр.н.е. по юлианския календар (т.е. 24 ноември 4714 пр.н.е. по григорианския 
календар). Така, например, 00:30 UT на 1 януари 2013 съответства на юлианска дата 
2456293,520833. Тъй като отправната точка е много отдавна, се получават неудобно големи 
числа. Затова е въведен модифицираният юлиански ден (MJD). Той се дефинира с MJD = JD −
2400000,5. 
 

ЗАДАЧИ 
 
Задача 1. Допетровски календар. През Средновековието в Русия било прието византийското 
летоброене – за начало на годината се считал 1 септември, а годините се водели спрямо 
“Сътворението на света”. Но на 19 декември 7208 г. “от Сътворението на света” Петър I 
подписал указ, съгласно който със следващия 1 януари започва новата 1700 г. “след Христа”. Ще 
считаме, че в допетровската епоха в Москва (𝜑 = 55°45′, 𝜆 = 37°37′) се е ползвало средно 
местно слънчево време. Каква дата сме днес (1 февруари 2015 г.) по допетровския календар? 
Какъв час точно ще показват “допетровските” часовници в Москва в 12:00 по московско време? 
(СПбАО2015-II-7/8) 
 
Задача 2. Капела от Рожен. В нощта на 12 юли 2018 г. проф. Никола Каравасилев провежда 
своите наблюдения на двуметровия телескоп в Националната астрономическа обсерватория 
Рожен (𝜑 = 41°41’35” N, 𝜆 = 24°44’38” Е). Точно в 22 часа по местно време неговият колега 
Момчил Петров от Троянската радиоастрофизическа обсерватория регистрира интересно 
явление и се обажда с молба да се насочи телескопът към обекта за проследяване на 
явлението. Астрономът Петров, както винаги припряно, обяснява на Никола, че това трябва да е 

звездата Капела, с координати в съответната епоха 𝛼 = 5h17m23s, 𝛿 = 46°00’23”. След кратко 
размишление, професорът отказва да изпълни молбата.  

• Каква е била причината за отказа?  

• Щеше ли професорът да се вслуша в молбата, ако се намираше в обсерваторията Туорла, 
Финландия, с координати 𝜑 = 60°24’57” N, 𝜆 = 22°26’36” Е? (НАО2009-IV-α) 

 
Задача 3. Архар. Архарът (киргизки планински овен), живеещ недалеч от Чолпон-Ата, се е 
заинтересувал от това, че на езерото Исък-Кул са пристигнали ученици от различни страни, 
които гледат в небето през нощта, и то не просто така, а през някакви тръби. Освен това, 
архарът е видял себе си на логото на това мероприятие, а също така е разбрал, че в негова чест 
е наречено едно от съзвездията на небето.  

• Ще може ли архарът да види звездите от това съзвездие днес през нощта на небето?  

• По кое време (киргизко време) и на каква височина в течение на следващото денонощие 
(16 октомври) ще кулминира най-ярката звезда от това съзвездие? (IAO2014-α) 

Справочни данни:  
Географска ширина на Чолпон-Ата – 42°39′ N  
Географска дължина на Чолпон-Ата – 77°05′ E 



 
Задача 4. Аналема. На снимката виждате негативно изображение на 
слънчева аналема. Тя се получава, когато в продължение на една 
година, през няколко дни, в един и същи час, Слънцето бива снимано, 
като при всеки кадър с голяма прецизност се възпроизвежда една и 
съща ориентация на фотокамерата.  

• В колко часа по местно време е била снимана тази аналема?   

• Означете с кръгчета местата, на които Слънцето се е намирало по 
време на равноденствията и слънцестоянията. До кръгчетата 

напишете датите, когато това се е случило.   

• Със стрелки означете посоките, в които Слънцето се “придвижва” 

по аналемата.   

• Каква е приблизителната географска ширина, на която е 
направена тази снимка? (НАО2006-III-9/10) 

 
Задача 5. Пладне през XXI век. Както е известно, в Литва (вж. картата) се 
използва време UT+02 през зимата и UT+03 през лятото. Пресметнете и 
направете извод: 

• Има ли в Литва такива места, където днес (8 септември 2013 г.) 
Слънцето ще се намира точно на юг в момента, в който 
часовниците на жителите на тези места ще показват 12:00?  

• А въобще в други дни от годината, могат ли да се намерят такива 
места? Ако да, пресметнете на кои дати, ако не, обосновете това с изчисления. (IAO2013-
αβ) 

 
Задача 6. Пладне. Любители на ледените морски бури тръгват с кораб на обиколка около 
Антарктида. Пътешествието започва на 26 февруари 2016 г. от Гринуичкия меридиан в 12 ч. по 
Гринуичко време. Корабът потегля на изток по паралела с 60° южна географска ширина и се 
придвижва на 15° по географска дължина за 24 часа. Радиусът на Земята е 6370 км.  

някои звезди; 
също може да ползвате таблицата 

към 10.4. и 10.5. 



• Определете скоростта на кораба.  

• Приблизително на какви географски дължини ще бъдат пътешествениците на 9 март 
2016 г. в 10 ч. 01 сек., в 11 ч. 01 сек. и 12 ч. 01 сек. по поясното време на часовия пояс, 
където се намира в тези моменти корабът? (НАО2016-II-7/8) 

 
Задача 7. Слънце на хоризонта. Всеки ден астроном прави наблюдения в един и същ момент по 
звездно време, при което винаги забелязва Слънцето на математическия хоризонт. Къде и кога 
се провеждат наблюденията? Пренебрегнете уравнението на времето. (IAO2003-β) 
 
Задача 8. Слънце при звездна полунощ. Същестуват ли на Земята точки, притежаващи следното 
свойство: всеки път, когато звездното време в град Орел (𝜑 = 53°, 𝜆 = 36°) е 0 часа, там 
непременно свети Слънцето (разбира се, ако няма облаци)? Ако такива точки съществуват, 
определете техните координати. (РАО2013-IV-11) 
 
Задача 9. Час на изгрев на Слънцето*. Намерете в колко часа (т.е. при какво показание на 
часовник) ще изгрее Слънцето за наблюдател в Стара Загора (𝜑 = 42°26′, 𝜆 = 25°39′) на 4 май. 
Под изгрев да се разбира подаването на някаква част от видимия диск на Слънцето над 
математическия хоризонт.  
Упътване: За по-лесно, първо пресметнете часа на изгрев без да отчитате рефракция, 
ъглов размер на Слънцето и уравнение на времето; чак тогава отчетете и тези фактори. 
  

за всички задачи може да се използва уравнението на времето в 11.5. 
 



12. ФАЗИ. ЗАТЪМНЕНИЯ 
 
фаза 

 
С движенията си по своите орбити телата от Слънчевата система променят положението си 
спрямо Земята, поради което ги виждаме осветени по различен начин в различни моменти, т.е. 
те променят своята фаза. Телата (а съответно и видимите им от Земята дискове) винаги имат 
осветена и неосветена от Слънцето част; двете части се разделят от граница, наречена 
терминатор. Върху видимия диск на тяло терминаторът изглежда като полуелипса с краища по 
периферията на диска. Дефинираме величината фаза 𝑓 като отношението на ъгловата площ на 

осветената част от диска и ъгловата площ на целия диск, т.е. 𝑓 =
𝑆1

𝑆
 на схемата. 

 
Задача 1. Фаза по снимки. Дадени са снимки на Луната 
(негативи). Определете лунната фаза за всяка от тях. 

 
Решение:  
Крайно неудобно е да пресмятаме отношение на площи за изчисляване на фазите. Вместо това 

ще покажем, че и в двата случая (𝑓 > 0,5 и 𝑓 < 0,5) за фазата може да се запише 𝑓 =
𝑏

𝑎
 (𝑏 и 𝑎 са 

указани на схемата и са перпендикулярни на голямата ос на елипсата, част от която е 
терминаторът). 
 
В първия случай площта на осветената част може да се представи като сбор от площ на полукръг 

с диаметър 𝑎 и площ на полуелипса с голяма полуос 
𝑎

2
 и малка полуос 𝑏 −

𝑎

2
, или 𝑆1 =

1

2

𝜋𝑎2
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4
. Площта на целия диск е площ на кръг с диаметър 𝑎, т.е. 
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. Тогава 
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/

𝜋𝑎2

4
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𝑏

𝑎
. Във втория случай площта на осветената част се представя 

като разлика на площ на полукръг с диаметър 𝑎 и площ на полуелипса с голяма полуос 
𝑎

2
 и 

малка полуос 
𝑎

2
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За да измерим 𝑏 и 𝑎, обаче, трябва да построим цялата периферия на 
лунния диск. Това ще направим по следния метод. Построяваме четири 
точки по края на диска и ги свързваме по двойки с отсечки. Симетралите 
на тези отсечки се пресичат в центъра на диска (или близо до него, тъй 
като може да има неточности; за по-точно определяне на центъра са 
нужни повече от две симетрали). След това с пергел, забит в намерения 
център, се очертава цялата периферия. Това позволява да се построи 
точно правата, върху която са отсечките 𝑏 и 𝑎, с които ще работим. 



Измерванията с линия ни дават 𝑓 ≈ 0,8 за първия случай и 𝑓 ≈ 0,3 за втория. ∎ 
 
Фазата на кое да е тяло за даден наблюдател зависи само и единствено от ъгъла наблюдател-
тяло-Слънце 𝜓, който наричаме фазов ъгъл. Ще изведем зависимостта между фазов ъгъл и 
фаза. 
 
Разглеждаме първо случая за остър фазов ъгъл. На чертежа са показани осветената и 
неосветената половина на наблюдавано тяло, приемайки, че всички слънчеви лъчи идват 
успоредни един на друг.  

 
 
Приближението за успоредните лъчи е вярно за тела с 
размери, много по-малки от разстоянието им до Слънцето, и 
може да се аргументира по следния начин. За успоредните 
лъчи светлина е вярно, че с времето разстоянията помежду 
им не се променят. Ако два лъча светлина, излъчени от точка 
от повърхността на Слънцето, сключват много малък ъгъл 
помежду си, то разстоянието между тях ще се увеличава 
много бавно с времето, т.е. те са почти успоредни. И наистина, 
ако някакви два лъча достигаха до две точки на разстояние 𝑟 
от Слънцето и на разстояние 𝑅 ≪ 𝑟 една от друга, от 
формулата за ъглов размер е видимо, че ъгълът между тях е 
изключително малък, т.е. те са на практика успоредни. 
 
Да се върнем на извеждането. На чертежа 𝐴𝐵 е терминатор (разбира се, терминаторът по едно 
сферично тяло е окръжност, но на чертежа това не е онагледено, тъй като е в равнина). Върху 
перпендикулярната на зрителния лъч равнина терминаторът се проектира в елипса (по-
специално, точка 𝐴 се проектира в точка 𝐴′), но тъй като едната половина на терминатора е 
поначало невидима за наблюдателя, той ще се явява полуелипса на видимия за наблюдателя 

диск (вж. чертежа). Видно е, че смисъл на фаза има отношението 
𝐷𝐴′

𝐷𝐶
. Да положим 𝐷𝑂 = 𝑐. Тъй 



като ∢𝐴𝑂𝐴′ = 𝜓 и 𝐴𝑂 = 𝐷𝑂 = 𝑐, то 𝐴′𝐷 = 𝐴′𝑂 + 𝐷𝑂 = 𝑐 cos 𝜓 + 𝑐. И взимайки предвид, че 

𝐷𝐶 = 2𝑐, заключаваме, че 𝑓 =
𝑐(1+cos 𝜓)

2𝑐
=

1+cos 𝜓

2
. 

• По аналогичен начин докажете, че при случая за тъп фазов ъгъл отново 𝑓 =
1+cos 𝜓

2
. 

• В каква конфигурация със Земята вътрешна планета ще има фаза 𝑓 = 0,5? 
 
лунни фази 
 
Движейки се по своята орбита около Земята, Луната постоянно променя своя фазов ъгъл за 
наблюдател на земната повърхност, с което и нейната фаза също ще се променя. Лунната 
орбита, както споменахме в §8., има инклинация 5,145°. Тази стойност е сравнително малка, 
поради което за разглеждането на лунните фази ще приемем, че орбитата на Луната лежи в 
равнината на еклиптиката. 

На чертежа са показани четирите основни фази 
на Луната (новолуние, първа четвърт, 
пълнолуние и последна четвърт; правете 
разлика между фаза в този смисъл и фаза като 
число) и положенията на Луната по орбитата, за 
които тези фази се наблюдават. Тук отново 
ползваме приближението за успоредните лъчи, 
защото радиусът на лунната орбита е много по-
малък от една астрономическа единица. 
 
Чертежът е направен, гледано от северния 
еклиптичен полюс. Ако наблюдател гледа откъм 
южния еклиптичен полюс, за него Луната ще се 
движи по орбитата си по часовниковата стрелка.  
 

При новолуние Слънцето, Земята и Луната са на една права, като Луната е между другите две 
тела. Тогава фазовият ъгъл на Луната е равен на 180°, което означава, че от Земята ще се вижда 

само неосветената й част (изведената от нас връзка 𝑓 =
1+cos 𝜓

2
  потвърждава това). И все пак, 

около новолуние Луната може да се види, защото до неосветената от Слънцето нейна част 
достигат отразени от Земята слънчеви лъчи. След новолуние движението на Луната я довежда 
до фаза първа четвърт (нарича се така, защото тогава Луната е изминала първата четвърт от 
орбитата си, гледайки на новолунието като начало). Тогава фазовият ъгъл на Луната е 90°. След 
като измине още една четвърт от орбитата си, Луната е в пълнолуние, фазовият й ъгъл е 0° и 
виждаме целия неин диск осветен. Когато Луната е в последна четвърт, фазовият й ъгъл отново 
се равнява на 90°, но това не означава, че за земен наблюдател тя изглежда по същия начин, 
както когато е в първа четвърт – при тези две фази се виждат осветени две противоположни 
половини на лунния диск. 
 
Фазата на Луната като число е индикатор за отдалечеността на Слънцето и Луната на небето – 
колкото по-голяма е фазата, толкова по-голям е ъгълът Слънце-Земя-Луна, чиято мярка е 
всъщност ъгловото отстояние на двете тела едно от друго за наблюдател. 

• Орбиталният период на Луната е 27,32 d. През колко време се повтарят лунните фази? 
 
слънчеви затъмнения 
 
На Земята затъмненията биват два вида – слънчеви и лунни. При слънчевите затъмнения 
лунният диск покрива отчасти или напълно слънчевия, а при лунните затъмнения земната сянка 
покрива отчасти или напълно лунния диск. Слънчевите затъмнения могат да бъдат: 



 
               пълни                                                         частични                                                 пръстеновидни 
 
Ще изследваме при какви условия се вижда 
всяко от тези затъмнения. За наблюдател в 
някаква точка Луната закрива област в 
пространството, определена от 
допирателните на тази точка с Луната.  
 
За точка 𝐴 на чертежа тези допирателни 
“ограждат” Слънцето, при което цялото 
Слънце попада в тази област, т.е. цялото 
Слънце е закрито от Луната и имаме пълно 
слънчево затъмнение.  
 
За точка 𝐵 само някои допирателни 
“ограждат” Слънцето, при което от тази 
точка ще се вижда някаква част от Слънцето 
и имаме частично слънчево затъмнение. 
 
За точка 𝐶 всички допирателни 
“влизат” в Слънцето, което 
означава, че ще е затъмнена само 
част от вътрешността на неговия 
диск – пръстеновидно слънчево 
затъмнение. 
 
Областите, от които може да се 
наблюдава даден вид затъмнение, 
тогава ще се определят чрез 
допирателните на Слънцето и Луната. 
В зона 1 се вижда пълно слънчево 
затъмнение, в зона 2 – частично, а в 
зона 3 – пръстеновидно (изберете 
произволна точка във всяка от зоните 
и проверете как са разположени 
допирателните й с Луната са 
разположени спрямо Слънцето). 
 
Разстоянието Земя-Луна е близко до разстоянието между центъра на Луната и зона 3. Затова 
лунната сянка върху земната повърхност има размер, много по-малък от радиуса на Луната. С 



полусянката (зона 2) това не е така –затова на дадено място по Земята пълни слънчеви 
затъмнения се наблюдават много по-рядко, отколкото частични. 

• На колко е равно разстоянието 𝑅0 от центъра на Луната до зона 3? Радиусът на Луната е 
𝑅ℂ = 1737 km, а този на Слънцето е 𝑅⊙ = 695700 km. Използвайте средната стойност на 
разстоянието Слънце-Земя, а именно 𝑟 = 1 AU.  

 
Голямата полуос на лунната орбита е около 384000 km. Ексцентрицитетът на орбитата е 
сравнително голям – 0,055. Поради това перигейното разстояние е 362600 km (< 𝑅0), а 
апогейното разстояние е 405400 km (> 𝑅0). Затова Земята може да се намира и в зона 1, и в 
зона 3. 
 
От чертежите става ясно, че слънчеви затъмнения от Земята ще се наблюдават само когато 
Луната е в новолуние. Обаче, дотук изглежда, че слънчево затъмнение ще се вижда някъде по 
Земята при всяко едно новолуние. Това не е така, защото Слънцето, Луната и Земята невинаги 
лежат приблизително в една равнина, което е следствие от инклинацията на лунната орбита. За 
да може Луната да е около равнината на еклиптиката, тя трябва да се намира около един от 
възлите си, независимо дали възходящия или низходящия. 
И така, условията за слънчево затъмнение на Земята са: 

1) Луната да е около един от възлите на своята орбита; 
2) Луната да е в новолуние. 

Ако искаме затъмнението да е пълно някъде по Земята, трябва също 
3) Ъгловият размер на Луната да е по-голям от този на Слънцето. 

Третото условие е еквивалентно на това разстоянието Земя-Луна да е по-малко от 
𝑅ℂ𝑟

𝑅⊙
, където 

обаче 𝑟 не е 1 AU, а моментното разстояние Земя-Слънце – земната орбита е елиптична, макар 
и с малък ексцентрицитет. 
 
Второто условие на пръв поглед твърди, че слънчеви затъмнения ще могат да се случват само 
когато Земята е близо до две конкретни положения по своята орбита – тези положения, при 
които линията на възлите (правата през низходящия и възходящия възел) сочи към Слънцето – 
вж. чертежа. 

Това щеше да е така, ако не беше прецесията на лунната орбита. Оста на лунната орбита, 
подобно на тази на Земята, описва конус в пространството, който обаче няма ъгъл при върха 
2𝜀 = 47°, а 2𝑖 = 10,3° (и това става с период не 26000, а 18,6 години). Това става в посока, 
обратна на тази на орбиталното движение на Луната. С прецесията се премества направлението 



на линията на възлите в пространството, което позволява да се наблюдават слънчеви 
затъмнения за всички положения на Земята по орбитата й. 
 
лунни затъмнения 

 
Те отново биват три вида: 

 
 

 
 
 
 
 
 
 
 

                    пълни                                                      частични                                              полусенчести 
 
За да разгледаме условията за лунно затъмнение, отново ще направим схема, подобна на тази 
за слънчевите затъмнения. 

Лунната орбита е начертана схематично, с цел да се покаже, че размерите й са съществено по-
малки от разстоянието между центъра на Земята и зона 3 на чертежа (това означава, че Луната 
не може да бъде в зона 3 и следователно не могат да се наблюдават пръстеновидни лунни 
затъмнения).  
 
Когато цялата Луна премине през конуса на зона 1, имаме пълно лунно затъмнение. За разлика 
от ситуацията при слънчевите затъмнения, когато имаме пълно лунно затъмнение, то се вижда 
от приблизително половината Земя, а не само от някаква много малка част от повърхността й.  

• Проучете – защо дискът на Луната има червен оттенък при пълно лунно затъмнение, а не 
е изцяло тъмен? 

Ако само част от Луната премине през конуса на зона 1, имаме частично лунно затъмнение (на 
чертежа този случай не е отразен специално, защото чертежът е в равнината и съответно не 
отчита инклинацията на лунната орбита). Полусенчесто лунно затъмнение имаме при 
преминаване на Луната през зона 2 – земната полусянка. Полусенчестото затъмнение почти не 
променя вида на лунния диск – той само потъмнява леко. 



Обобщавайки, условията за лунно затъмнение на Земята са: 
1) Луната да е около един от възлите на своята орбита, 
2) при което да е в пълнолуние. 

 
При всяко затъмнение Луната е на малко по-различно положение по 
орбитата си от предишното. Затова в краткосрочен план всяко 
затъмнение има различен вид, но все пак в затъмненията има 

периодичност. Затъмнения с почти еднакъв вид (били те 
слънчеви или лунни) се повтарят през период от 6585,3211 d, 
който се нарича сарос. 

 
ЗАДАЧИ 
 
Задача 2. Фази на Венера и Луната. През първите няколко месеца на 2015 година 
Венера ще се вижда на вечерното небе след залеза на Слънцето. При много ясно 
време и спокойна атмосфера вие сте успели да направите снимка на Венера, която 
изглежда по показания на фигурата начин. Дадена е осветената от Слънцето част 
на планетата. Изображението не е обърнато. Направете необходимите построения 
и измервания и нарисувайте приблизително как ще изглежда фазата на Луната, ако 
я наблюдаваме на небето в непосредствена близост до Венера. Радиусът на 
орбитата на Венера е 0,7 астрономически единици. (НАО2015-II-11/12) 
 
Задача 3. Относно фазите. Да се докаже, че фазата на външна планета винаги е по-голяма от 0,5 
и има най-малка стойност, когато планетата е в квадратура. Доказателството направете за 
кръгови орбити. 
 
Задача 4. Захарна задача. Планетата Пандишпан има сладоледени полярни шапки и океани от 
вишнев сироп. Тя обикаля около своята звезда с период 380 денонощия. Шоколадените 
обитатели на планетата през деня се крият във вафлените си къщички, за да не се разтопят, а 
през нощта съзерцават голямата Медена луна. Периодът между две нейни пълнолуния се 
различава с едно денонощие от периода между две преминавания на луната през съзвездието 
Курабийка. Намерете орбиталния период на Медената луна около планетата Пандишпан. 
(НАО2007-III-11/12) 
 
Задача 5. Частично осветено тяло. Някакво сферично по форма тяло от Слънчевата система има 
фаза 𝐹 за наблюдател на Земята. Определете максималното възможно разстояние от Земята до 
това тяло в този момент. Земната орбита приемете за кръгова. (РАО2013-IV-10) 
 
Задача 6. Пълно лунно затъмнение. Вие ръководите Дружеството на любителите на лунни 
затъмнения и сте решили да поставите рекорд, с който окончателно ще сломите конкуренцията 
на Дружеството на любителите на слънчеви затъмнения. Планирате масови фотографски 
наблюдения на предстоящото лунно затъмнение на 28 септември 2015 г. и искате това да бъде 
затъмнението, заснето от най-много географски пунктове на Земята. За целта трябва да 
изпратите съобщения до всички свои привърженици по света, които ще могат да видят 
затъмнението.  
Ето характерните моменти на лунното затъмнение:  
Начало на частичната фаза – 01 ч. 07 м. UT (Гринуичко време); 
Начало на пълната фаза – 02 ч. 11 м. UT; 
Момент на максимална фаза – 02 ч. 47 м. UT; 
Край на пълната фаза – 03 ч. 23 м. UT; 
Край на частичната фаза – 04 ч. 27 м. UT. 

Схема на полусенчесто затъмнение 
– показани са сеченията на 
конусите на зона 1 и зона 2 там, 
където Луната навлиза в тях. 



• На каква географска дължина в момента на максимална фаза на затъмнението Луната ще 
бъде в горна кулминация?   

• Приблизително в каква посока ще се вижда в този момент Луната от София?   

• Определете приблизително от какви географски дължини по Земята затъмнението ще 
може да се наблюдава от началото до края. А на какви географски дължини ще се вижда 
поне част от затъмнението?  (НАО2015-III-9/10) 

 
Задача 7. Луна като лодка. При какви условия можем да видим 
Луната като лодка над хоризонта? В коя част от денонощието ще 
се наблюдава Луната? В каква посока ще се вижда? Кога през 
годината и къде по Земята може да се случи това? Наклонът на 
лунната орбита към еклиптиката да не се отчита. Лунната “лодка” 
е точно хоризонтално уравновесена. (НАО2005-III-9/10) 
 
Задача 8. Снимка на Юпитер. На снимката на Юпитер, направена на 19 октомври 2009, може да 
се види един от Галилеевите спътници и неговата сянка върху диска на планетата. В момента на 
направа на снимката Юпитер е бил в средата на съзвездието Козирог. Намерете разстоянието от 
спътника до повърхността на планетата. Определете името му. Решението си придружете с 
подходящите чертежи. (IAO2014-αβ) 
 
Справочни данни: 
Радиус на орбитата на Юпитер – 5,2 AU 
Екваториален диаметър на Юпитер – 142984 km 

 
Задача 9. Затъмнение. Слънчевото затъмнение е много впечатляващо явление, особено когато 
е пълно. Намираме се на земния екватор и наблюдаваме слънчево затъмнение. Затъмнението 
се случва в зенита за нас. Продължителността на пълната фаза е само миг. Слънчевата корона се 
показва за момент и веднага изчезва.  



• Начертайте схема на такова затъмнение. Определете разстоянието между центровете на 
Луната и Земята в момента на пълното затъмнение.  

Геостационарните спътници се движат по екваториална орбита с радиус 42164 километра в 
равнината на земния екватор. Тя е избрана така, че периодът на спътниците при движението им 
по орбитата да е равен на периода на завъртане на Земята около нейната ос. Нека един 
геостационарен спътник преминава централно през сянката на Луната по време на 
наблюдаваното от нас пълно слънчево затъмнение.  

• По кое време на годината може да се случи това затъмнение?  

• Определете продължителността на пълното затъмнение за наблюдател на спътника, т.е. 
за колко време спътникът ще пресече сянката на Луната. В случая приемете, че Луната се 
движи по кръгова орбита. (НАО2014-III-11/12) 

Справочни данни: 
Сидеричен период на Луната – 27,32 d 
Наклон на лунната орбита към еклиптиката – 5,15° 
 
Задача 10. Северна столица. Определете дължината на сянката на вертикален стълб с височина 
𝐻 = 8 m и диаметър 𝐷 = 20 cm по пладне в деня на зимно слънцестоене в Санкт Петербург 
(𝜑 = 60°). Ъгловият размер на Слънцето е 𝜌⊙ = 32′. (РАО2016-V) 
 
Задача 11. Лунно затъмнение*. На изображението е показана карта, изобразяваща местата на 
видимост по земното кълбо (изобразени в светло) на едно пълно лунно затъмнение, което ще 
бъде наблюдавано през настоящия век.  

• Приблизително през кой месец от годината ще се наблюдава то? 

• Какви ще са условията за наблюдение на затъмнението в България? А в южните части на 
остров Гренландия? 

• Направете необходимите измервания по картата и пресметнете колко ще бъде 
продължителността на пълната фаза на затъмнението (времето през което Луната е 
изцяло в земната сянка). 

Всички ваши отговори трябва да бъдат обяснени подробно. 
Тъмната част на картата не е нощната половина на Земята! Тя е областта от земното кълбо, от 
която никаква част от лунното затъмнение няма да може да се наблюдава. (НАО2014-IV-α) 



13. ПАРАЛАКС. АБЕРАЦИЯ 
 
денонощен паралакс, денонощен хоризонтален паралакс 
 
Когато наблюдател се премества в пространството, за него 
близките обекти променят положението си на фона на по-
далечните (вж. схемата). По същата причина за двама 
неподвижни наблюдатели един и същ обект може да има 
различно положение спрямо по-далечните. Това явление 
намира широко приложение в астрономията. 
 
Да разгледаме два наблюдателни пункта по земната повърхност 𝐴 и 𝐵, разстоянието между 
които е 𝑅  (тук под разстояние се има предвид отсечка в пространството, а не дъга по земната 
повърхност). От пунктовете се гледа обект 𝑂 на разстояние 𝑟 от тях, като 𝑟 ≫ 𝑅. От всеки от 
наблюдателните пунктове 𝑂 ще се вижда на различно място спрямо по-далечните обекти, т.е. 𝑂 
ще е на различно място по небето. Като мярка за отклонението във видимото положение се 
използва равният на половината от ∢𝐴𝑂𝐵 ъгъл π, който се нарича паралакс. В случая, когато 
паралаксът е следствие от различни положения по Земята, той се нарича денонощен паралакс. 
 

Тъй като 𝑟 ≫ 𝑅, 𝑅 = 2π[rad]𝑟. 
Когато 𝑟 е сравнимо по 
големина с 𝑅, денонощният 
паралакс на даден обект вече 
не зависи само от 𝑟 и 𝑅, а се 
определя по-сложно.  
 
Знаейки стойността на 
денонощен паралакс на тяло 
от измервания по небето и 
разстоянието между дадени 
два наблюдателни пункта, 
ние можем да определим 
разстоянието до тялото.  
 

Определянето на денонощен паралакс може да стане и от един наблюдателен пункт, защото 
самият той се движи в пространството поради околоосното въртене на Земята. 

• Намерете средната стойност на денонощния хоризонтален паралакс на Луната и на 
Слънцето. Денонощен хоризонтален паралакс на дадено тяло 𝑂 е ∢𝐶𝑂𝐷, където 𝐶 е 
място, за което 𝑂 е в зенита, и 𝐷 е място, за което 𝑂 е на математическия хоризонт. 

 
Решение:  
От чертежа е видно, че за денонощния хоризонтален паралакс 𝑝 e 

изпълнено sin 𝑝 =
𝑅

𝑟
, където 𝑅 е земният радиус, а 𝑟 е разстоянието 

между 𝑂 и центъра на Земята. Голямата полуос на лунната орбита, 
съответно и средното разстояние Луна-Земя, е 384000 km. Взимайки 
радиуса на Земята за 6371 km, имаме 𝑝 = 0,95°. За Слънцето 𝑟 ≫ 𝑅 
важи в още по-голяма степен, така че може и директно да ползваме 

𝑝[rad] =
𝑅

𝑟
, където 𝑟 = 1,496 × 108 km. Тогава 𝑝 = 4,26 × 10−5 rad = 8,79′′. ∎ 

• Намерете денонощния хоризонтален паралакс на най-близката до нас звезда, Проксима 
Центавър, намираща се на 4,25 ly (светлинни години) от нас. Една светлинна година е 
разстоянието, което светлината изминава във вакуум за една юлианска година.  



Резултатът от последния пример е изключително малък ъгъл, който не може да се измери точно 
и от най-прецизните инструменти. Разстоянията до звездите, обаче, все пак могат да се 
определят чрез паралакс. За целта използваме не различни положения по земната повърхност, 
а по орбитата на Земята.  
 
годишен паралакс 
 
На чертежа е показана близка звезда с хелиоцентрична (т.е. измерена, гледайки от Слънцето) 
еклиптична ширина 90°. Тъй като разстоянието до звездата е много по-голямо от радиуса на 
земната орбита, геоцентричната (т.е. измерената от Земята) еклиптична ширина на звездата 
също ще клони към 90°. 
 
Поради това, че Земята се движи по орбитата си, 
положението на близката звезда по небето (т.е. на фона 
на по-далечните звезди) се мени, като звездата описва 
т.нар. паралактична елипса. Както е видно от чертежа, 
паралактичната елипса за звезда с еклиптична ширина 
𝛽 = 90° се явява еднаква по форма със земната орбита 
(на практика е окръжност). 
 
Когато звезда описва паралактичната си елипса на север 
от еклиптиката, наблюдателят от Земята вижда това да 
става по часовниковата стрелка. Съответно, гледано от 
Земята, звездите с южна еклиптична ширина описват 
паралактичните си елипси обратно на часовниковата 
стрелка. 
 
По определение годишният паралакс на дадена звезда е 
ъгловият размер на голямата полуос на паралактичната й елипса (π на чертежа). Ако означим с 

𝑅 радиуса на земната орбита и с 𝑟 разстоянието до звездата, то sin π =
𝑅

𝑟
. Тъй като π е много 

малък ъгъл, имаме sin π =
𝑅

𝑟
≈ π[rad]. Записваме в астрономически единици 𝑅 и 𝑟:  

π[rad]𝑟[AU] = 𝑅[AU] 
𝜋

180 × 60 × 60
π[′′]𝑟[AU] = 1 

π[′′] =
1

180 × 60 × 60
𝜋 𝑟[AU]

 

π[′′] =
1

𝑟[pc]
 

С цел опростяване на формулата въведохме нова мерна единица за разстояние, парсек (pc), 

като 1 pc =
180×60×60

𝜋
 AU ≈ 206265 AU ≈ 3,26 ly. Годишните паралакси на най-близките звезди 

са от порядъка на 1’’, а разстоянията до тях – от порядъка на 1 pc. 
 
Все още не сме разгледали формата на паралактичната елипса на звезда с произволна 
еклиптична ширина. Тогава паралактичната елипса няма да има формата на земната орбита, а 
на нейната проекция в равнината, перпендикулярна на правата “наблюдател-звезда”. 
Проекцията на окръжност с радиус 𝑙 върху равнина, наклонена под ъгъл 𝛼 спрямо равнината на 
окръжността, е елипса с голяма полуос 𝑙 и малка полуос 𝑙 cos 𝛼. Именно затова за звезда с 
еклиптична ширина 𝛽 паралактичната елипса има голяма полуос π и малка полуос π sin 𝛽 (вж. 
чертежа). 
 
 



 

• Как ще изглежда паралактичната елипса на звезда по еклиптиката? 
 
аберация 
 
Аберацията на светлината е явление, поради което 
движещ се в пространството наблюдател не вижда 
светилата там, където би ги виждал, ако беше в покой. 
Нека разгледаме наблюдател на Земята, който се движи 
заедно с нея в пространството с орбиталната й скорост 
𝑣 = 29,78 km/s. Той използва наблюдателен инструмент 
(напр. телескоп, око и т.н.), в който светлината влиза от 
точка 𝑂 и излиза от точка 𝐾, където наблюдателят я 
вижда. Нека наблюдателят е насочил уреда си към 
истинското положение на някаква звезда 𝑀. Лъчите 
светлина от 𝑀 достигат точка 𝑂, преминават за някакво 
време 𝑡 разстоянието 𝐾𝑂 = 𝑐𝑡 (𝑐 ≈ 3 × 108 m/s е 
скоростта на светлината във вакуум) и попадат в точка 𝐾. 
Но наблюдателят няма да види тези лъчи, защото за 
време 𝑡 той, заедно с уреда си, се е преместил на 
разстояние 𝑣𝑡 (и вече положението на наблюдателния инструмент е 𝐾1𝑂1). За да може 
наблюдателят да види лъчите, той трябва да насочи уреда си по направление 𝐾’𝑂→, така че след 
като лъч светлина от 𝑀 премине през точка 𝑂, той да се озове в точка 𝐾 точно тогава, когато 
краят 𝐾’ на наблюдателния инструмент също се е преместил при 𝐾 (с разстояние 𝑣𝑡). С други 
думи, наблюдателят вижда звездата не в положение 𝑀, а в положение 𝑀’ по направление 
𝐾’𝑂→. Ъгълът между направленията към и към 𝑀’ наричаме ъгъл на аберация 𝜎. По синусовата 

теорема sin 𝜎 =
𝑣

𝑐
sin 𝜃, където 𝜃 e ъгълът между видимото направление към звездата и 

направлението на земното движение по орбитата. Отчитайки, че 𝜎 е малък ъгъл, 𝜎 =

206265′′
𝑣

𝑐
sin 𝜃. След заместване на числени стойности за 𝑣 и 𝑐, 𝜎 ≈ 20,5′′ sin 𝜃. Тъй като за 

звезда на някой от еклиптичните полюси винаги 𝜃 = 90°, тя ще описва около истинското си 
положение окръжност с радиус 20,5’’. В общия случай звездите описват аберационни елипси с 
голяма полуос 20,5’’ и малка полуос 20,5′′ sin 𝛽 (𝛽 е еклиптична ширина). Ясно е, че 
аберационните елипси са много по-големи от паралактичните. Много преди да бъдат измерени 
първите паралакси на звездите, през 1727 г. Джеймс Брадли обяснява аберацията на 
светлината, с което намира стойността на скоростта на светлината със забележителна за 
времето си точност. 



ЗАДАЧИ 
 
Задача 1. Астероид. Астрономи от две обсерватории, намиращи се на разстояние 3172 km една 
от друга, правят CCD снимки на определена област от небето в търсене на близък до Земята 
астероид. От обсерватория 1 са получени две снимки през една и съща нощ, съответно в 4h 53m 
UT и 7h 16m UT. Тези изображения (негативи) са показани съответно на рис. 7.1 и рис. 7.2. След 
тези снимки са получени още две, направени в обсерватория 1 и обсерватория 2 
едновременно. Тези снимки са показани на рис. 7.3. Мащабът на всички снимки е еднакъв. 

• Намерете и означете астероида на всичките дадени изображения.  

• Измерете ъгловото отместване на астероида (в arcsec), гледано от обсерватория 1, и 
изчислете неговата ъглова скорост в arcsec/s.  

• Измерете паралакса на астероида и определете разстоянието му до Земята.  

• Изчислете тангенциалната скорост на астероида.  
Предоставена ви е оризова хартия за измерване на ъгловите отмествания на астероида. 
(IAO2013-α) 
 
Задача 2. Критична ситуация. След дълги години полет в състояние на хибернация 
космонавтите от екипажа на междузвезден кораб се събуждат и разбират, че са попаднали в 
беда. В резултат на близко прелитане покрай планета, кръжаща около черна дупка, корабът е 
захванат в орбита около черната дупка. С помощта на тримерния звезден атлас космонавтите 
откриват Слънцето – то се вижда в направление, перпендикулярно към орбиталната равнина на 
кораба. Наблюденията им показват, че то описва паралактична елипса, която е представена на 
фигурата. До наблюдаваните позиции на Слънцето са дадени моментите от време. Уредите на 
кораба показват, че разстоянието до Слънцето се равнява на 20,9 pc. 

• Определете масата на черната дупка.  
С най-мощния ракетен импулс, на който са способни двигателите, скоростта на  
кораба може да се измени с 𝛥𝑉 =  55 km/s. Горивото стига за два такива импулса. 
Минималното време за подготовка на двигателите преди всеки импулс е 40 часа.  

• Опишете как за най-кратко време 
корабът може да се освободи от 
гравитационната прегръдка на черната 
дупка и да се отправи в междузвездното 
пространство. (НАО2015-III-11/12) 

 
Задача 3. Кулминация. На каква максимална 
височина 𝑎M може да се наблюдава Луната от 
Солун? Географската ширина на Солун е 𝜑𝛩 =
40°37′. Отчетете колкото се може повече 
фактори. (IOAA2013) 
  
Задача 4. Близка звезда. В продължение на 
повече от седем години звездно поле в района 
на Големия Магеланов облак е било заснемано 
с панорамен приемник, съставен от няколко CCD 
камери. Впоследствие изображенията са били 
обработени астрометрично с цел намиране на 
звезди от нашата Галактика с голямо собствено движение, които се виждат на фона на Големия 
Магеланов облак. Най-бърза се оказва звездата LMC 194.6.41. На дадената ви диаграма са 
показани положенията на звездата относно условно избрана отправна точка. По абсцисата са 
нанесени моментите от време в юлиански дни, а по ординатата – отместванията по 
ректасцензия и деклинация от нулевата точка, измерени в дъгови секунди.  



• Определете собственото движение на звездата.  

• Определете паралакса на звездата и разстоянието до нея.   

• Ако лъчевата скорост е 𝑉𝑟 = −26 km/s, то каква е пространствената скорост на звездата 

(измерена в километри в секунда)?   

• Как бихте обяснили прекъсванията в поредиците от наблюдателни данни,  нанесени на 
графиките? (НАО2015-III-9/10) 

Справочни данни: 

Координати на Големия Магеланов Облак (LMC): 𝛼 = 5h23m34s, 𝛿 = −69° 45’  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Задача 5. Паралакси. В нашата част на галактиката средното разстояние между звездите е 
около 6 ly. Да предположим, че най-малкият паралакс, който интерферометър може да измери, 
е 0,001’’. Паралаксът на колко звезди от Млечния път може да се определи чрез този 
интерферометър? (IAO2012-α) 
Упътване: За 𝑁 тела, които са разпределени в даден обем 𝑉, средното разстояние между 
две тела е равно на кубичния корен от средния обем, който се полага на едно от всичките 

тела (т.е. √
𝑉

𝑁

3
 ). 

 
Задача 6. Затъмнение на полюсите. Белият мечок и пингвинът от предишните международни 
олимпиади се завърнали на своите полюси (съответно северен и южен) и решили да 
наблюдават пръстеновидно слънчево затъмнение. Пингвинът имал късмета да види удивителна 
картина: В момента на максимална фаза на затъмнението центровете и на слънчевия, и на 
лунния диск, били точно на видимия хоризонт. А какво е видял белият мечок по това време? 
Нанесете с плътни линии на чертеж какво е видял белият мечок (като положения на Слънцето и 
Луната), а с прекъснати линии на същия чертеж означете истинските положения на Слънцето и 
Луната. На чертежа отбележете нужните ъгловите размери. Приемете, че Земята е сферична. 
Спомнете си нужната информация за мечока и пингвина. (IAO2015-αβ) 

Задача 7. Мурманска комета. В полунощ по местно време южно от полярния град Мурманск 
(𝜑 = 68,5°N) се наблюдава красива гледка – пълно лунно затъмнение. На небето също прави 
впечатление и комета (сравнително слаба по яркост), чийто видим път на фона на звездите 
изглежда като развиваща се спирала, една завивка на която кометата прави за една година. 
Центърът на спиралата е на същата височина над хоризонта, на която е и Луната, но лежи 
противоположно на Луната спрямо зенита. 

• Приблизително в каква посока сочи опашката на кометата? 



• В каква посока се развива спиралата на кометата – по часовниковата стрелка или 
обратно? Аргументирайте се. 

• Кога през годината може да се види това на небето? В кое съзвездие е Луната? 
Ъгловият размер на спиралата е от порядъка на 100 − 101 градуса. 
 
Задача 8. Паралактична елипса*. Дадена е компютърно симулирана паралактична елипса, 
описвана от звезда. 

• Да предположим, че звездата е отдалечена на разстояние 426 светлинни години.  
Оразмерете скалите по ректасцензия и деклинация на диаграмата в дъгови секунди. 

• В каква посока звездата описва тази паралактична елипса – по часовниковата стрелка 
или ообратно? 

• Кога през годината звездата преминава през краищата на голямата и на малката ос на 
елипсата? 

• Нарисувайте схематично как би изглеждала паралактичната елипса при увеличаване и 
при намаляване на ректасцензията на звездата с малка величина. 

• Направете необходимите измервания и определете еклиптичната ширина на звездата. 

• Да предположим, че лъчевата скорост на звездата е 13 км/с. Нарисувайте приблизително 
кривата на изменението на лъчевата скорост на звездата, породено от орбиталното 
движение на Земята около Слънцето. Пресметнете точните стойности на наблюдаваната 
лъчева скорост в няколко характерни моменти от време и ги използвайте при 
построяването на кривата. Отбележете върху паралактичната елипса точките, които 
съответстват на същите моменти от време. (НАО2014-IV-β) 

 



Задача 9. Гравитационна леща*. Като ефект от общата теория на относителността, при 
преминаване на минимално разстояние 𝑏 от обект с маса 𝑀, светлинните лъчи се изкривяват с 

ъгъл 𝜃[rad] =
4𝛾𝑀

𝑏𝑐2 , където 𝑐 е скоростта на светлината.  

За да демонстрира това пред вас, астрономът Александър Куртенков избира двойната звезда 𝑃, 
която се намира на разстояние 10,6 pc от Слънцето и има тангенциална скорост 13,86 km/s, 
насочена изцяло по ректасцензия, на запад. Тоест, ректасцензията на 𝑃 намалява поради 
собственото движение, а деклинацията не се променя. Орбитите на компонентите на двойната 
звезда са кръгови и зрителният лъч лежи в равнината им. Орбиталният период е 10,0 h. 
Наблюдаваната разлика между лъчевите скорости на двете компоненти достига до максимална 
стойност 400 km/s. 

• Пресметнете общата маса на системата 𝑃 в слънчеви маси. 

• Пресметнете собственото движение на системата 𝑃 в ъглови секунди на година. 

• На 15.07.2016 г. 𝑃 има екваториални координати 𝛼𝑃 = 18h01m10s, 1261 и  𝛿𝑃 =

−23°26′38′′, 610, а звездата 𝑄 – 𝛼𝑄 = 18h01m10s, 0772 и 𝛿𝑄 = −23°26′38′′, 661. 

Международен екип от учени, ръководен от Александър Куртенков, планира да провери 
гореописания ефект от общата теория на относителността, извършвайки свръхточни 
наблюдения на 𝑃 и 𝑄 с оптичен интерферометър. Планирани са наблюдения на 
06.09.2018 година. Пресметнете очакваните екваториални координати на 𝑄 на тази дата 
с възможно най-висока точност. Звездата 𝑄 е на много голямо разстояние (над 500 pc) и 
има пренебрежимо собствено движение. 

Екваториалните координати се пресмятат спрямо астрометрични стандарти и не се влияят от 
аберацията на светлината. (НАО2016-III-11/12) 



 

изображения към зад. 1 



14. СВЕТЛИНА – I 
 
светлината като вълна 
 
По същество светлината представлява електромагнитна вълна. Електромагнитните вълни, 
преносители на енергия в пространството, се характеризират с дължина на вълната 𝜆, 
представляваща разстоянието между два съседни гребена или дола на вълната (вж. схемата). 
Други характеристики са амплитудата 𝐴, т.е. разстоянието от даден гребен или дол до оста, 
около която вълната осцилира, и честотата 𝜈, т.е. броят периоди на вълната за единица време 
(един период 𝑇 на вълната е времето, за което даден гребен се премества на мястото на 
следващия, т.е. сe премества с една дължина на вълната).  

От определенията за тези величини следват зависимостите 𝜈 =
1

𝑇
 и 𝑢 = 𝜆𝜈, където 𝑢 е скоростта 

на разпространение на вълната. Електромагнитните вълни се движат със скорост 𝑢 = 𝑐 ≈
3 × 108 m/s във вакуум, но скоростта им на разпространение в други среди варира. Поради 
това при преминаване на електромагнитна вълна от една среда в друга, дължината й се 
променя, като честотата й остава същата. 
 
Съвкупността от всички възможни честоти (и съответно 
дължини на вълната) на електромагнитна вълна се нарича 
електромагнитен спектър. По положението им в спектъра 
разделяме вълните на различни класове (вж. схемата). Един 
такъв клас е видимата светлина, обхващаща дължини на 
вълната във вакуум от 400 nm до 700 nm, т.е. от 4000 Å до 7000 

Å (1 nm е 10−9 m, а 1 Å, един ангстрьом, е 10−10 m). Човешките  
очи могат да присвояват цвят само на вълни в областта на 
видимата светлина. 
 
геометрична оптика 
 
Когато не се интересуваме от вълновата природа на светлината, 
говорим за геометрична оптика (а не за вълнова оптика). При 
геометричната оптика разглеждаме светлината като лъчи (в 
математическия смисъл на думата), в направлението на които 
се пренася енергия. Тук ще изложим някои елементи от 
геометричната оптика. 
 
отражение и пречупване на светлината 
 
За дадена среда дефинираме коефициента на пречупване 𝑛 

като отношението 
𝑐

𝑢
 (𝑢 - скорост на светлината в средата, 𝑐 - 

скорост на светлината във вакуум).  



Когато светлина попадне на границата на две различни среди, част от нея се 
отразява и част от нея се пречупва както е показано на схемата, при което 

важат законът за отражението, 𝛼 = 𝛼′, и законът на Снелиус, 
sin 𝛼

sin 𝛽
=

𝑛2

𝑛1
. 

 
огледала 
 
Огледалата отразяват идващите от даден предмет лъчи светлина, 
създавайки образ на предмета там, където отразените лъчи се събират. За 
пример ще опишем построяването на образа на пръчката 𝐴𝐵, създаден от 
плоско огледало (вж. чертежа). За целта е достатъчно е да се построят образите на точките 𝐴 и 
𝐵. От всяка точка построяваме два лъча. Отразените лъчи не се пресичат – пресичат се обаче 
продълженията им. Пресечните точки са търсените образи. Тези образи са недействителни, 
защото се получават от продълженията на лъчи. 

• Човек с височина 170 cm се оглежда във вертикално 
поставено плоско огледало. Каква трябва да е 
минималната височина на огледалото, така че 
човекът да може да види себе си в цял ръст? 

Отделно от плоските огледала, има и такива със закривена 
повърхност. Най-често срещани са сферичните огледала, 
чиято повърхност представлява сферична шапка, но в 
телескопите, например, често се ползват параболични 
огледала, чиято повърхност е отрез от параболоид (тялото, 
което се получава при завъртането на парабола около ос 
през върха й). На чертежа е показано закривено огледало с 
главна оптична ос a. То се характеризира с център на 
кривината 𝑂 и фокус 𝐹. Тези две точки лежат на главната 
оптична ос, като разстоянието от 𝐹 до върха на огледалото 
(т. нар. фокусно разстояние 𝑓) е два пъти по-малко от разстоянието от 𝑂 до върха.  
За да изследваме получаването на образи от огледалото, ще използваме следните две свойства: 

1) Лъч светлина, успореден на главната оптична ос, след отражение от огледалото 
преминава през неговия фокус (точно вярно за параболични огледала и вярно в 
приближение за останалите видове). 

2) Лъч светлина, попаднал върху върха на огледалото, се отразява симетрично спрямо 
главната оптична ос. 

Разглеждаме предмет 𝐴𝐵, отдалечен на разстояние 𝑟 от върха, и съответно неговия образ. 
Както се вижда на схемите, при 𝑑 < 𝑓 образът 𝐴’𝐵’ е прав, уголемен и недействителен. При 𝑑 =
𝑓 всички отразени лъчи са успоредни, поради което образ не се получава. При 2𝑓 > 𝑑 > 𝑓 
образът е обърнат, уголемен и действителен. При 𝑑 = 2𝑓 той е обърнат, със същия размер като 
предмета и действителен. При 𝑑 > 2𝑓 той е обърнат, умален и действителен. 
 

 
 
 



 
Отбелязваме, че тук разсъждаваме за вдлъбнато огледало, т.е. такова, при което отразяващата 
повърхност е вдлъбната. Закривените огледала могат да бъдат и изпъкнали. 

• Характеризирайте образа на предмет, получен от изпъкнало закривено огледало, т.е. 
определете дали е прав/обърнат, умален/уголемен, действителен/недействителен.  

Когато двата лъча, чрез които построявахме досега образа, сключват малки ъгли с главната 
оптична ос (т.е. е валидно приближението sin 𝑥 ≈ 𝑥 [rad]), е вярна формулата 

1

𝑎
+

1

𝑏
=

1

𝑓
 

Тук 𝑎 е предметното разстояние (на схемите това е разстоянието между 𝐴 и върха на 
огледалото), 𝑏 е образното разстояние (разстоянието между 𝐴′ и върха) и 𝑓 е фокусното 
разстояние. Във формулата знакът на 𝑎 и 𝑏 зависи от това дали предметът/образът е пред или 
зад отразяващата повърхност – пишем плюс за “пред” и минус за “зад”. Знакът на 𝑓 е плюс за 
вдлъбнати огледала и минус за изпъкнали. В задачите по астрономия тази формула е 
приложима, тъй като работим с много отдалечени обекти, чиито лъчи сключват малки ъгли с 
главната оптична ос поради отдалечеността. 
 
лещи 
 
Лещите по същество са оптични уреди, които чрез пречупване фокусират или разсейват 
светлинните лъчи. Тук ще разгледаме двата основни типа лещи – събирателни и разсейвателни. 
Както и при закривените огледала, за лещите се дефинира главна оптична ос, върху която от 
двете страни на лещата и на равни разстояния от нея лежат два фокуса. Фокусното разстояние 
за лещите е разстоянието от кой да е от двата фокуса до самата леща. Ще изследваме 
получаването на образа 𝐶′𝐷′ на предмет 𝐶𝐷 от тънка събирателна леща в зависимост от 
разстоянието му до лещата 𝑑, възползвайки се от следните свойства (вж. схемите): 

1) Лъч светлина през центъра на лещата не се пречупва. 
2) Успореден сноп лъчи след пречупване от лещата се събира в една точка от фокалната 

равнина (равнина, перпендикулярна на главната оптична ос и преминаваща през фокус)  
 

 



При 𝑑 < 𝑓 образът е прав, уголемен и недействителен. При 𝑑 = 𝑓 всички пречупени лъчи са 
успоредни и образ не се получава. За 2𝑓 > 𝑑 > 𝑓 образът е обърнат, уголемен и действителен. 
При 𝑑 = 2𝑓 той е обърнат, със същия размер като предмета и действителен. При 𝑑 > 2𝑓 той е 
обърнат, умален и действителен.  

• Характеризирайте образа на предмет, получен от разсейвателна леща, т.е. определете 
дали е прав/обърнат, умален/уголемен, действителен/недействителен.  

От всичко това следва, че образите при лещи се характиризират както образите при закривени 
огледала. 
 

 
 
 
 
 
 
 
 
Приликата, всъщност, не свършва дотук. За тънка леща също е вярна формулата 

1

𝑎
+

1

𝑏
=

1

𝑓
 

Тук 𝑎, 𝑏 и 𝑓 са отново съответно предметно, образно и фокусно разстояние. Знакът пред 𝑓 тук е 
плюс за събирателни и минус за разсейвателни лещи. Както и при закривените огледала, знакът 
на 𝑎 и 𝑏 e положителен за “пред” и отрицателен за “зад”. 

• Докажете формулата. За улеснение, направете това само за даден частен случай, 
например 2𝑓 > 𝑑 > 𝑓. 

 
дифракция 
 
Преди да продължим по същество, да представим концепцията за вълновите фронтове, често 
използвана във вълновата оптика. Когато изследваме разпространението на вълни в среда, 
достатъчно ни е да знаем положението само на, например, гребените. Затова работим с 
вълнови фронтове, линии, съединяващи гребените. Фронтовете за сноп успоредни лъчи са 
успоредни (вж. схемите): 
 



 
 
 
 
 
 
 
 
 
 

Следствие от вълновата природа на светлината е явлението дифракция. Под дифракция 
обикновено се разбират отклоненията от праволинейното разпространие на светлината в 
еднородна среда. Да разгледаме повърхност с тесен кръгъл отвор в нея и точков източник на 
светлина, много отдалечен от повърхността. При такава постановка може да приемем, че 
лъчите светлина, идващи към повърхността, са успоредни. При преминаването си през отвора 
лъчите обаче дифрактират, при което вече не се разпространяват праволинейно. Ако начертаем 
вълновите фронтове за тези лъчи, може да забележим, че ефектът е по-силен при по-тесен 
отвор – ако отворът е много широк, вълновите фронтове почти не се изменят. 

При поставяне на екран на пътя на дифрактиралите лъчи, върху този екран се наблюдава т.нар. 
дифракционна картина (няма да разглеждаме причините подробно). В частния случай, когато 
говорим за отдалечен точков източник на светлина и дифракцията е от кръгъл отвор, картината 
изглежда по следния начин: 

 
В центъра има диск; по-навън се редуват светли и тъмни 
пръстени, като в пръстените се разпределя значително 
по-малка част от излъчването на точковия източник, 
отколкото в диска в центъра. Този диск наричаме диск на 
Ейри. Доказва се, че за неговия ъглов радиус 𝛼, гледано 

от отвора, е вярно sin 𝛼 =
1,22𝜆

𝐷
, където 𝜆 е дължината на 

вълната за дифрактиралите вълни, а 𝐷 е диаметърът на 
отвора (вж. схемата). 
 
 
 
 
 

 
 
 
 
 



телескопи 
 
Когато получаваме образ на предмет с леща или закривено огледало с фокусно разстояние 𝑓, а 

предметното разстояние е 𝑎 ≫ 𝑓, в 
1

𝑎
+

1

𝑏
=

1

𝑓
 може да пренебрегнем члена 

1

𝑎
 като твърде малък, 

при което 𝑏 = 𝑓.  С други думи, образите на много отдалечени предмети (𝑎 ≫ 𝑓) на практика 
лежат във фокалната равнина. Човешкото око работи именно поради това. Светлината от 
заобикалящите ни предмети се фокусира от лещата на окото и образите на предметите се 
получават върху повърхност, наречена ретина, на която лежи фокусът на лещата. Мозъкът 
обработва тези образи и създава картина на заобикалящата среда. Казаното дотук обяснява 
защо когато човек с перфектно зрение погледне обект твърде отблизо, обектът му се вижда 
размазан – предметното разстояние не е много по-голямо от фокусното и образът на обекта 
вече не се получава върху ретината. 
 
Телескопите работят на същия принцип, както и окото. Най-важната им част, наречена обектив, 
създава образи на наблюдаваните с телескопа далечни тела върху своята фокална равнина. 
Обективът има много по-голяма площ от лещата на човешкото око, поради което събира и 
повече светлина. Затова с телескопи се виждат по-слаби обекти, отколкото с просто око. 
Обективът може да бъде леща или закривено огледало, в зависимост от което телескопът е 
рефрактор или рефлектор (някои телескопи комбинират лещи и закривени огледала – те се 
наричат катадиоптрични). 
 
Образът, получен от обектива, може или да се наблюдава с просто око, за което е необходим 
окуляр, или да се фотографира, което обикновено става чрез поставяне на приемник във 
фокалната равнина. В днешно време за приемници се ползват основно т.нар. CCD матрици. 
Характерни параметри на дадена CCD матрица са размерът на пиксела, чиято големина в 
сравнение с големината на образите върху фокалната равнина определя качеството на 
изображението, и квантовата ефективност – грубо казано, каква част от падналата светлина 
матрицата “отчита”. 
 
Задача 1. Вещица. Смел астроном любител, презиращ всякакви суеверия, участва в школата по 
астрономия на Белите Брези. На самотна полянка той наблюдава Луната през своя 26-
сантиметров телескоп. Млада вещица от школата по вълшебства прочита мислите му и се 
появява на летящата си метла модел Nimbus 2000S от магически спрегнатото пространство. 
Вещицата на метлата има стандартен размер 137 cm. Точно в полунощ астрономът вижда в 
центъра на лунния диск тъмно петно с размер 1/13 от видимия ъглов диаметър на Луната. 
Петното расте и след 42 sec тъмният силует на вещицата вече изпълва лунния диск. 

• В колко часа вещицата се е приземила до изоставения на полянката телескоп? С каква 
скорост се е движила? 

• Пресметнете размера на изображението на вещицата, получено върху CCD матрицата на 
телескопа в 00 h 00 m 42 s, ако фокусното разстояние на обектива на телескопа е 260 cm. 
(НАО2002-III-7/8) 

 
Решение: 
В условието на задачата не е споменато дали телескопът е рефрактор или рефлектор. Това, 
всъщност, не е от значение. Както вече установихме, образът се получава еднакво за леща и 
закривено огледало. Затова в задачите може да разглеждаме какъв да е вид телескоп, имащ 
обектив с диаметър 𝐷 и фокусно разстояние 𝐹, като рефрактор, имащ за обектив събирателна 
леща с диаметър 𝐷 и фокусно разстояние 𝐹. Тази “трансформация” не запазва ефектите, 
произтичащи от оптичните свойства на огледалата/лещите, но геометрията на построяването на 
образите остава на практика същата. 



а) Точно в полунощ ъгловият размер на вещицата е 𝛿1 =
1

13
𝛿𝐿, където 𝛿𝐿 е ъгловият размер на 

Луната. Разстоянието до вещицата в този момент е 𝑟1, като 𝑙 = 𝛿1[rad]𝑟1 (𝑙 = 137 cm – линеен 
размер). След 𝛥𝑡 = 42 s ъгловият размер е 𝛿2 = 𝛿𝐿 и разстоянието до вещицата е 𝑟2, при което 
𝑙 = 𝛿2[rad]𝑟2. И така, скоростта на вещицата е  

𝑣 =
𝑟1 − 𝑟2

 𝛥𝑡
=

𝑙 (
1
𝛿1

−
1
𝛿2

)

𝛥𝑡
=

𝑙 (
13
𝛿𝐿

−
1
𝛿𝐿

)

𝛥𝑡
=

12𝑙

𝛿𝐿𝛥𝑡
 

Заместваме 𝑙 = 1,37 m, 𝛿𝐿 ≈ 0,5° ⟺ 8,73 × 10−3 rad и 𝛥𝑡 = 42 s; тогава 𝑣 = 44,8 m/s. От 
полунощ до приземяването при телескопа вещицата изминава разстояние 𝑟1 със скорост 𝑣. 

Търсеното време е 𝛥𝑡1 =
𝑟1

𝑣
=

𝑙

𝛿1𝑣
=

13𝑙

𝛿𝐿𝑣
=

13

12
𝛥𝑡 = 45,5 s, т.е. приземяването става в 00 h 00 m 

45,5 s. 
б) Ще използваме гореописаната “трансформация” в рефрактор. Ъгловият размер на вещицата 
в търсения момент е 𝛿2 = 𝛿𝐿 ≈ 0,5°. Приемаме, че образът й от лещата-обектив се получава 
върху фокалната равнина. За локализирането му тогава няма нужда да чертаем успореден и 
централен лъч, както преди правихме – стига само централен лъч, от пресечната точка на който 
с фокалната равнина се интересуваме.  

Тъй като в конкретния случай 𝐹 ≫ 𝐷, от чертежа е видно, че 𝑠 = 𝛿𝐿[rad]𝐹 (𝑠 е размерът на 
изображението). Така 𝑠 = 22,7 mm. Ако бяхме сигурни, че изображението е разположено 
симетрично спрямо главната оптична ос на обектива, по-точен начин за пресмятане на 𝑠 е чрез 

връзката 𝑠 = 2𝐹 tg (
𝛿𝐿

2
). ∎ 

Обръщаме внимание, че телескопът създава обърнат образ. Всъщност, човешкото око също 
създава обърнат образ, но мозъкът го “изправя”. При наблюдения с телескоп се ползват 
различни оптични пособия (призми и т.н.) за изправяне на образа, ако това е нужно. 
 
Кеплер и Нютон 
 
Сега ще разгледаме две широкоразпространени системи телескопи с окуляр. Телескопът 
система Кеплер е рефрактор, използващ събирателни лещи като обектив и окуляр. За да може 
човешкото око да наблюдава образа, получен във фокалната равнина, лъчите от този образ 
трябва да идват успоредни към окото (за да може окото от своя страна да състави образ, лежащ 
на ретината). Задачата на окуляра именно е да направи успоредни лъчите светлина от образа 
във фокалната равнина. Затова окулярът трябва да се постави на разстояние 𝑓 от образа (и 
съответно от фокалната равнина), където 𝑓 е неговото фокусно разстояние. Така се оказва, че 
трябва фокусите на обектива и окуляра съвпадат. 
 
Нека с телескоп система Кеплер се наблюдава обект с ъглов размер 𝛿 (вж. чертежа). 
Успоредният след пречупване от окуляра сноп светлинни лъчи от образа сключва с главната 
оптична ос ъгъл не 𝛿, а 𝛿1. Това е ъгловият размер на наблюдавания от окото образ. Величината 

𝑚 =
𝛿1

𝛿
 наричаме увеличение на телескопа. Да видим от какво зависи увеличението. Ако 

изображението във фокалната равнина има размер 𝑙, то tg 𝛿 =
𝑙

𝐹
 и tg 𝛿1 =

𝑙

𝑓
, където 𝐹 и 𝑓 

съответно са фокусните разстояния на обектива и окуляра. В повечето случаи 𝑙 ≪ 𝑓, 𝐹; тогава 𝛿 



и 𝛿1 са малки ъгли и за тях е валидно приближението tg 𝑥 ≈ sin 𝑥 ≈ 𝑥 [rad]. Следва, че 𝑚 =
𝐹

𝑓
.  

Ако желаем по-голямо увеличение, трябва да поставим на телескопа окуляр с по-малко фокусно 
разстояние. Формулата за увеличение не е валидна само за телескопи система Кеплер, а и за 
телескопи с други системи, т.к. условието фокусите на обектив и окуляр да съвпадат остава. 
 
Телескопът система Нютон е рефлектор, използващ закривено огледало (в идеалния случай 
параболично, но често се изработва сферично за икономия) и плоско огледало за създаване на 
образ. Плоското огледало изнася фокуса на закривеното огледало на място, удобно за 
поставяне на окуляр, запазвайки фокусното разстояние на телескопа. Показано на схемата е 
построяването на образа за точков източник, лъчите от който можем да приемем за успоредни 
поради отдалечеността му. Както при система Кеплер, лъчите от образа излизат от окуляра 
успоредни: 

Ясно е, че вторичното огледало ще блокира част от идващата към обектива светлина. Това, 
поясняваме, не оставя “дупка” в центъра на наблюдавания в окуляра образ (вж. на схемата 
лъчите, излизащи от образа във фокуса). 
 
Прости системи телескопи като показаните тук са жертва на много дефекти, наречени оптични 
аберации, поради които образът е недобре фокусиран, разкривен или оцветен. Поради това 
система Кеплер и система Нютон се ползват на практика само от любителите-астрономи. 
Аберациите произтичат от самите оптични елементи, използвани в телескопите – лещи и 
огледала. Стремежът да се коригират различните аберации е довел до създаването на 
катадиоптричните телескопи. 
 
разделителна способност 
 
Когато светлината от далечни тела влиза в око или телескоп, тя преминава през кръгъл отвор с 
някакъв диаметър. Затов когато наблюдаваме точков източник в телескоп, ние не виждаме 
точков образ, а дифракционната картина на източника, центърът на която е на мястото, където 
би се получил точковият образ при отсъствие на дифракция.  
 
За определеност сега ще работим за рефрактор (вж. чертежа). Нека ъгловият радиус (гледано от 
обектива) на диска на Ейри за наблюдаваната дифракционна картина във фокалната равнина е 



𝛼. Тогава sin 𝛼 =
1,22𝜆

𝐷
, където 𝜆 е дължината на вълната на светлината, която се наблюдава, а 𝐷 

е диаметърът на обектива. Чертежът показва, че точковият източник поради дифракцията има 

“ъглов размер” за телескопа 𝜃 = 𝛼. Така sin 𝜃 =
1,22𝜆

𝐷
 и понеже в повечето случаи 𝜆 ≪ 𝐷 

(казваме повечето, защото се провеждат астрономически наблюдения и в областта на 
радиовълните – фактът, че окото не им присвоява цвят, не означава, че засичането им е 

невъзможно), 𝜃 е малък ъгъл и с голяма точност може да запишем 𝜃 [rad] =
1,22𝜆

𝐷
.  

 
Известен от ежедневието факт е, че два предмета на малко ъглово разстояние един от друг не 
се различават добре, “сливайки се”. Причината за това е дифракцията от зеницата (отворът на 
човешкото око, пропускащ светлината). Когато дифракционните картини на два източника на 
светлина са много близо една до друга, те се сливат, при което източниците не се разделят от 
окото. Според т.нар. критерий на Рейли два точкови източника не се различават, когато 
центърът на диска на Ейри за единия обект попада някъде върху диска на Ейри на другия. Тоест 

те ще се разделят, когато ъгълът между тях е по-голям от 𝜃 [rad] =
1,22𝜆

𝐷
 (при същите означения). 

Минималното ъглово разстояние 𝜃, при което те се 
различават, се нарича разделителна способност. От 
формулата е ясно, че при по-голям диаметър на обектива 
има по-добра разделителна способност. Диаметърът на 
зеницата е около 1-2 мм при слънчево време и около 5 мм 
максимум – за дължина на вълната в средата на видимия 
диапазон, 550 nm, разделителната способност на окото е 
около 1’.  Дори и при любителските телескопи тя е много 
по-добра. Затова в телескоп може да различим близки 
двойки звезди, които с просто око не можем. 
 
Разделителната способност реално не зависи само от дифракцията, а и от оптичните аберации и 
влиянието на земната атмосфера. Принципно атмосферата ограничава разделителната 
способност на телескоп до около 1’’, макар че сравнително нови технологии като адаптивната 
оптика позволяват влиянието на атмосферата да се намали. За да се избегнат изцяло 
проблемите, породени от земната атмосфера, се изстрелват от Земята космически телескопи. 
 
интерферометри 
 
Поради вълновата природа на светлината е възможно да се разположат в поле един до друг 
няколко телескопа, така че да работят като един след комбиниране на сигналите, засечени от 
тях. Такова поле с телескопи наричаме астрономически интерферометър. С намаляването на 
дължината на вълната синхронизирането на сигналите става все по-сложна задача. Затова 



интерферометрите се използват основно при наблюдения в радиодиапазона, където 
дължините на вълните са големи.  
 
Разделителната способност на интерферометър е равна на разделителната способност на 
хипотетичен телескоп с диаметър на обектива, равен на разстоянието между двата най-
отдалечени телескопа в полето му. Интерферометърът, обаче, далеч не събира толкова 
светлина, колкото въпросния хипотетичен телескоп. 
 
светлината като частица 
 
Квант във физиката наричаме неделима порция от някаква величина. Установено е, че 
светлината се квантува – грубо казано, разпространява се на порции, които наричаме фотони. 
При светлината се наблюдава явлението корпускулярно-вълнов дуализъм, т.е. тя притежава и 
свойства на вълна, и свойства на частица. Тук няма противоречие – понятията за вълна и частица 
не могат поотделно да опишат напълно сложната природа на светлината. 
 
Енергията на даден фотон (напомняме, че електромагнитните вълни са преносители на енергия) 
се задава с 𝐸 = ℎ𝜈, където ℎ = 6,626 × 10−34 J ∙ s  е константата на Планк, а 𝜈 е честотата на 
вълната за съответния фотон. 
 

ЗАДАЧИ 
 
Задача 3. Огледало за телескоп. Разполагате със стъклен диск с дебелина 𝑏 = 40 mm, от който 
трябва да бъде изработено чрез шлифоване сферично огледало с диаметър 𝐷 = 500 mm. Какви 
фокусни разстояния може да има изработеното огледало? (IAO2009-α) 
 
Задача 4. Маймуна. На наблюдателния кръг ще ползвате прост телескоп Нютон с диаметър на 
огледалото 125 mm, фокусно разстояние 1025 mm и три окуляра с фокусни разстояния 12 mm, 
25 mm и 38 mm. Намерете на какви разстояния трябва да отместим съответните окуляри (1,2,3), 
за да настроим телескопа да наблюдава не звездите, а маймуна на 𝐿 =  50 m. Представете 
отговора си с формула и число. Кой от окулярите ще е най-подходящ за наблюдение на 
маймуната? Защо? (IAO2006-αβ) 
 
Задача 5. Два астероида. Предстои да се наблюдава окултация (покритие) на един астероид от 
друг астероид. Първият астероид е от групата на троянците, а вторият има радиус на орбитата 
4,000 AU. Троянецът има орбитална скорост, равна на средната скорост на астероидите троянци. 
В нощта на наблюденията астероидите се движат успоредно на небесния екватор, имат една и 
съща деклинация и се намират в опозиция. Наблюденията се извършват от Калина Стоименова, 
смел и неуморим оператор на 2м телескоп на НАО-Рожен, докъдето тя се е изкачила в дълбок 
сняг с тежка раница на гърба. Телескопът има фокусно разстояние 16000 mm. За получаване на 
изображенията се използва CCD камера VersArray:1300B, която има матрица 1340х1300 пиксела. 
Пикселите са квадратни с размер 20 микрона. В първото изображение двата астероида са 
разположени на един ред пиксели, като центърът на изображението на първия астероид е 
върху пиксела с номер 557, а изображението на втория – върху пиксел с номер 500. 
Номерацията на пикселите нараства в западна посока.  

• След колко време ще се случи взаимното покритие на астероидите?  

• Върху кой пиксел ще се проектира центърът на изображението на двата астероида в 
момента на покритието? Телескопът следи полето с астероидите, като изображенията на 
звездите не променят своите положения по CCD матрицата. (НАО2015-IV-β) 

 
Задача 6. Хидропланета. Хидропланета се състои от скалисто “ядро” с радиус 𝑅 и обкръжаващ 
го от всички страни дебел слой вода. Представителите на местната цивилизация живеят на 



дъното на този световен океан (т.е. на повърхността на “ядрото”) и за тях хидросферата 
представлява аналог на нашата атмосфера. От дъното на океана местните учени провеждат 
астрономически наблюдения. Както и на Земята, денонощието на хидропланетата продължава 
𝑇 = 24 h. 

• Намерете минималната дълбочина на океана 𝐻, при която на хоризонта ще се виждат 
небесни тела. 

• Каква ще е продължителността на деня за жителите на екватора на такава планета? 
Дискът на централната звезда може да се счита за точков източник на светлина. 

• Пресметнете големината на рефракцията на хоризонта за хидропланетата. 
Външната повърхност на океана е равна, без вълни. Коефициентът на пречупване на водата е 
𝑛 = 1,333. (IAO2014-αβ) 
 
Задача 7. Планетариум. В устройството, наречено “планетариум”, всяка група звезди се 
проектира на купола от малка оптична система. В качеството на “слайдове” на съзвездията, 
които се проектират на купола, се използват пластинки, на които всяка една звезда 
представлява дупка със съответен размер. Разглеждаме планетариума на обсерваторията 
“Бобек”, чийто диаметър на купола е 2𝑅 = 10 m. Там на пластинките най-ярките звезди имат 
размер 𝑙0 = 0,1 mm. Оценете какви параметри (кои параметри точно – определете сами) трябва 
да има обективът на тази оптична система, така че посетителите, седящи в центъра на купола, 
да възприемат звездите като точкови източници (а не като кръгове или “мъглявини”). (IAO2011-
β) 
 
Задача 8. Слънцето върху екран. Наблюдаваме Слънцето (с ъглов размер 𝛿), проектирано върху 
хартиен екран с помощта на рефрактор. Първо получаваме фокусирано изображение на 
Слънцето с диаметър 𝑑1 на разстояние 𝑥1 от окуляра. След това получаваме фокусирано 
изображение на Слънцето с диаметър 𝑑2 на разстояние 𝑥2 от окуляра. Ако на същия телескоп 
поставим тъмен филтър и погледнем към Слънцето направо през окуляра, с какво увеличение 
ще наблюдаваме Слънцето? (НАО2001-III-11/12) 
 
 
 



15. СВЕТЛИНА – II 
 
излъчване на абсолютно черно тяло 
 
Абсолютно черно тяло (АЧТ) е такова, което поглъща всичкото електромагнитно лъчение, 
попадащо върху него. С голяма точност може да приемаме звездите за абсолютно черни тела.  
 
Звездите (и изобщо АЧТ) като източници на лъчение не излъчват електромагнитни вълни само с 
конкретна дължина на вълната, а в целия спектър. Според закона на Планк това колко силно 
излъчва абсолютно черно тяло за дадена дължина на вълната зависи от температурата на 
излъчващата му повърхност – няма да се спрем на формулата, но все пак ще покажем графично 
зависимостта за някои температури: 

На графиката температурите са отбелязани не в градуси Целзий, а в келвини [K] (връзката 
между температурите по двете скали е 𝑇[K] = 𝑇[°C] + 273,15).  
 
Видно е, че пpи всички температури има конкретна дължина на вълната, за която излъчването 
на АЧТ е най-силно. Тази дължина на вълната може да се определи чрез закона на Вин: 

𝜆max =
𝑏

𝑇
 

Тук 𝜆max[m] е въпросната дължина на вълната, 𝑇[K] е температурата на тялото, а  
𝑏 = 2,9 × 10−3 m ∙ K е константата на Вин. 

• Температурата на повърхността на Слънцето е приблизително 5770 K. На каква дължина 
на вълната то излъчва най-силно? В коя част от спектъра е тази дължина? Случайност ли 
е това? Защо? 

 
Пълното (т.е. в целия спектър) количество енергия, излъчено от АЧТ за единица време, се 
нарича светимост. Обикновено се измерва във ватове [W], т.е. джаули за секунда, и се задава 
със закона на Стефан-Болцман: 

𝐿 = 𝜎𝑇4𝑆 



Във формулата 𝐿[W] е светимостта на АЧТ, 𝑇[K] е температурата на повърхността на тялото, 
𝑆 [m2] е излъчващата площ на тялото, а 𝜎 = 5,67 × 10−8 W ∙ m−2 ∙ K−4 е константата на Стефан-
Болцман. 
 
Ако разглеждаме сферична звезда с радиус 𝑅, нейната светимост се дава чрез 𝐿 = 4𝜋𝑅2𝜎𝑇4 
(при същите означения). 
 
осветеност 
 
Осветеност дефинираме като пълното количество енергия, попаднало върху единица площ за 
единица време на дадено разстояние от източник. Нека намерим колко W/m2 е осветеността 
на разстояние 𝑟 от произволна звезда със светимост 𝐿. Да си представим сфера с радиус 𝑟 и 
център, съвпадащ с този на звездата.  

Всичкото лъчение от звездата за една секунда преминава през такава хипотетична сфера с 
повърхнина 4𝜋𝑟2. Тоест светимостта на звездата се “разпределя” равномерно върху площ 4𝜋𝑟2 
(поради симетрията). Това означава, че осветеността за всяка точка от сферата е 

𝐸 =
𝐿

4𝜋𝑟2
 

• Пресметнете приблизително т.нар. слънчева константа, осветеността на разстояние 1 AU 
от Слънцето. Приемете температурата на Слънцето за 5770 K и радиуса му за 696000 km. 

Отбелязваме, че в стойността на слънчевата константа се наблюдават малки 
промени поради слънчевата активност, например появата и изчезването на 
слънчевите петна – области по повърхността на Слънцето с по-ниска 
температура (вж. снимката). 
 
Да вземем планета с радиус 𝑅1 на разстояние 𝑟 от звездата, която досега 
разглеждахме. Нека видим каква част от лъчението на звездата попада върху 
планетата. За целта отново разглеждаме мислената сфера с радиус 𝑟 и 
сечението й с планетата. Тъй като 𝑟 ≫ 𝑅1, сечението може да се разглежда като окръжност с 
площ 𝜋𝑅1

2. Очевидно всичката светлина, попадаща върху планетата, е насочена към сечението. 
И така, отношението на светимостта 𝐿′, “разпределена” върху планетата, към светимостта, 
“разпределена” върху цялата сфера, е равно на отношението на площите на сечението и на 

сферата. Така 
𝐿′

𝐿
=

𝜋𝑅1
2

4𝜋𝑟2 или 𝐿′ = 𝐿
𝜋𝑅1

2

4𝜋𝑟2 = 𝐸𝜋𝑅1
2.  

 
 
 
 



 
Част от лъчението, попаднало върху планетата, се отразява от нея, а останалата част се поглъща. 
За характеризиране на това каква част от идващата светлина се отразява използваме 
безразмерен коефициент, наречен албедо. Отразената част от “разпределената” върху 
планетата светимост е 𝐴𝐿′, а погълнатата част е (1 − 𝐴)𝐿′, където 𝐴 е албедото на планетата. 
Отразената част планетата разпределя в пространството по особен начин. На схемата е показана 
мислена сфера с радиус 𝑟1 около планетата и точки 𝑀, 𝑁, 𝑃 върху тази сфера. Точка 𝑀, гледано 

от която фазата на планетата е 1, получава осветеност от планетата 𝐸1 =
𝐴𝐿′

2𝜋𝑟1
2. За останалите 

точки, гледано от които фазата на планетата е 𝑓, осветеността е приблизително 𝐸1 =
𝐴𝐿′

2𝜋𝑟1
2 𝑓, като 

това приближение става все по-неточно с намаляването на 𝑓 (на схемата, например, това 
приближение би било по-точно за 𝑃, отколкото за 𝑁). 
 

Сега да разгледаме какво става с погълнатата част от “разпределената” върху планетата 
светимост. Заради нея планетата би трябвало постоянно да се нагрява, но температурата на 
планетите е относително постоянна. Това се получава, защото планетата излъчва също толкова 
енергия, колкото и получава. Разглеждаме два случая:  

1) планетата се върти бързо 
В този случай може да приемем, че температурата на планетата 𝑇1 е приблизително еднаква 
навсякъде по нея (Земята е пример за такава планета). Приравнявайки погълнатата част от 
светимостта с излъчването на планетата, получаваме (1 − 𝐴)𝐿′ = 4𝜋𝑅1

2𝜎𝑇1
4. Тогава имаме 

(1 − 𝐴)𝐸𝜋𝑅1
2 = 4𝜋𝑅1

2𝜎𝑇1
4, тоест 

(1−𝐴)4𝜋𝑅2𝜎𝑇4

4𝜋𝑟2 = 4𝜎𝑇1
4. Така 𝑇1 = 𝑇 √

(1−𝐴)𝑅2

4𝑟2

4
 (видно е, че 



температурата на планетата не зависи от размерите й). Ако заместим в получения израз 
характерните за Слънцето и Земята стойности, а именно 𝑇 ≈ 5800 K, 𝐴 ≈ 0,3, 𝑅 = 696000 km и 
𝑟 = 1,496 × 108 km, ще получим 𝑇1 ≈ 255 K ⇔ −18° C. Истинската средна температура на 
Земята е около 15° C. Разликата идва поради няколко фактора. Първо, в направените от нас 
приближения има известна неточност. Отделно от това, Земята има и друг източник на топлина 
освен слънчевата енергия – земното ядро. Не на последно място, Земята има атмосфера, 
предизвикаща парников ефект, който затопля. На Венера парниковият ефект е толкова силен, че 
температурата на повърхността й е по-висока от тази за Меркурий, който е съществено по-
близък до Слънцето. 

2) планетата се върти бавно 
Ако такава планета няма атмосфера, между температурите на огрятата и неогрятата от звездата 
части ще има значителна разлика (неогрятата част остава неогрята за дълъг период от време). 
Затова може да приемем, че такава планета (добър пример в Слънчевата система е Меркурий) 
ще излъчва само с едното си полукълбо. Затова (1 − 𝐴)𝐿′ = 2𝜋𝑅1

2𝜎𝑇1
4, при което имаме 𝑇1 =

𝑇 √
(1−𝐴)𝑅2

2𝑟2

4
. Полученият резултат отново има характер на оценка – температурата реално не е 

еднаква по цялото осветено полукълбо. 
 
И така, оказва се, че планетата на практика разпределя обратно в пространството и отразената, 
и погълнатата част от идващата към нея светлина. Но е ясно, че механизмите, по които се 
разпределят обратно двете части, са съвсем различни. Спектърът на планетата (графиката на 
интензитета на излъчването в зависимост от дължината на вълната) няма да изглежда като 
спектъра на нейната звезда. Той ще има два характерни участъка, съответстващи на отразената 
светлина от звездата и на топлинното излъчване на планетата, произтичащо от погълнатата 
светлина от звездата и вътрешната активност на планетата. За пример е даден спектърът на 
Юпитер: 

Слънцето излъчва най-силно в областта на видимата светлина. Затова в спектъра на Юпитер 
участъкът, съответстващ на отразената светлина, също ще има максимум в тази област. 
Участъкът, съответстващ на топлинното излъчване на Юпитер, ще има максимум със значително 
по-голяма дължина на вълната – той ще бъде в областта на инфрачервените лъчи (следствие от 
закона на Вин). 
 
филтри 
 
Когато желаем да заснемем излъчването на даден обект не в целия спектър, а само за 
конкретни дължини на вълната, на наблюдателния уред може да поставим филтър, който да 
пропуска само въпросните дължини. Най-често използваният в астрономията комплект филтри 
е UBVRI. Показани тук са отделните филтри и пропускливостта им в зависимост от дължината на 



вълната (забележете, че филтрите далеч не пропускат всичката светлина в съответната си област 
от спектъра): 

 
Отбелязваме, че човешкото око също представлява своеобразен филтър, пропускайки светлина 
само в конкретна област от спектъра. Приема се, че филтър 𝑉 сравнително добре симулира 
човешкото зрение. 
 
видима звездна величина 
 
Както осветеността, видимата звездна величина най-общо представлява мярка за яркостта на 
небесно тяло. В миналото древните гърци са категоризирали звездите на небето според 
яркостта им, като за най-ярките звезди се казвало, че са от първа звездна величина, а за най-
слабите – че са от шеста звездна величина, като по дефиниция звезда от звездна величина 𝑚 
била два пъти по-ярка от такава от звездна величина 𝑚 + 1. Скалата на звездните величини се 
явявала логаритмична – звезда от 1m (т.е. първа звездна величина; m е индекс, не степен) e два 
пъти по-ярка на небето спрямо звезда от 2m, но четири пъти по-ярка от такава от 3m и така 
нататък. 
 
С малки изменения, тази система на древните гърци се е запазила и до днес, но до 
възникването на приемници като фотоплаки и CCD матрици, категоризацията по звездни 
величини се правела буквално на око и съответно била твърде неточна. През 1856 г. Норман 
Погсън формализира системата, дефинирайки звезда от 1m като сто пъти по-ярка от звезда от 
6m. От логаритмичността на скалата следва това, че разлика от една звездна величина 

съответства на отношение на яркостите √100
5

≈ 2,512. Изхождайки от казаното дотук, можем 
да запишем за два произволни астрономически обекта връзката между видима звездна 
величина и яркост така (т.нар. формула на Погсън): 

𝛷𝑥1

𝛷𝑥2
= 2,512(𝑚𝑥2−𝑚𝑥1) 

Тук 𝛷𝑥 е потокът светлина от обектите в някакъв филтър 𝑥, а 𝑚𝑥 е видимата звездната величина 
на обектите във филтър 𝑥. Потокът 𝛷𝑥 ще е само някаква част от пълната осветеност от кой да е 
от обектите. Логаритмувайки двете страни (използваме десетичен логаритъм), достигаме до 
друг вид на формулата на Погсън: 

(𝑚𝑥2 − 𝑚𝑥1) lg √100
5

= lg
𝛷𝑥1

𝛷𝑥2
 



1

5
(𝑚𝑥2 − 𝑚𝑥1) lg 100 = lg

𝛷𝑥1

𝛷𝑥2
 

0,4(𝑚𝑥2 − 𝑚𝑥1) = lg
𝛷𝑥1

𝛷𝑥2
 

𝑚𝑥1 − 𝑚𝑥2 = −2,5 lg
𝛷𝑥1

𝛷𝑥2
 

Чрез приемник на електромагнитно излъчване може да се измери 𝛷𝑥 за произволни два обекта, 
откъдето съответно да се намери разликата в звездните им величини във филтър 𝑥. Но за да 
намерим какви точно са звездните величини на двата обекта, трябва да имаме отправна точка, 
т.е. някакъв астрономически обект, звездната величина на който е предварително известна, 
спрямо който да съпоставяме. В качеството на такъв обект ползваме звездата Вега (по-точно, 
АЧТ с температурата на повърхността на Вега и размерите на Вега). По определение видимата 
звездна величина на Вега във всички филтри е 0m.  
 
Ако запишем формулата на Погсън не за филтър, а за целия спектър (все едно за филтър, 
пропускащ всички идващи лъчи), тя придобива вида 

𝑚1 − 𝑚2 = −2,5 lg
𝐸1

𝐸2
 

Тук 𝐸 е осветеност (защото говорим за целия спектър), а 𝑚 е т.нар. болометрична видима 
звездна величина – видима звездна величина не във филтър, а за целия спектър. Отново, 
болометричната видима звездна величина на Вега е 0m. 
 
Често в условията на олимпиадните задачи терминологията по отношение на звездните 
величини е използвана неясно. В задачите нерядко се споменава “видима звездна величина” 
без да се конкретизира филтър или дали тази звездна величина е болометрична. Тогава 
обикновено се има предвид видимата звездна величина така, както я възприема окото; може 
да се каже, във филтър 𝑉. 
 
Отделно от това, в задачите от някои олимпиади се използва видима звездна величина, както я 
възприема окото, в качеството на болометрична (при съпоставяне на осветености, например). 
Това е неправилно! Често болометричната видима звездна величина е много близка по 
стойност до видимата звездна величина във филтър 𝑉 (например за Слънцето), но също толкова 
често – не. И все пак, когато в задача няма друга възможност, приемете двете видими звездни 
величини за приблизително равни. 
 
Задача 1. Плеяди. Звездният куп Плеяди е един от най-близките до нас разсеяни звездни 
купове и с невъоръжено око в него могат да се различат отделни звезди. Видимите звездни 
величини на седемте най-ярки звезди от Плеядите са 2,9m , 3,6m , 3,7m , 3,9m , 4,2m , 4,3m и 5,1m. 
Каква би била видимата звездна величина на една звезда с блясък, равен на общия блясък на 
седемте звезди (т.е. каква е сумарната звездна величина на звездите)? (НАО2005-II-11/12) 
 
Решение: 
Означаваме с от 𝑚1 до 𝑚7 звездните величини на отделните звезди, с 𝑚 сумарната звездна 
велична, с от 𝛷1 до 𝛷7 потоците светлина във видимата област на спектъра за отделните звезди 
и с 𝛷 потока светлина във видимата област за хипотетичната звезда. Ще използваме, че 𝛷1 +

𝛷2 + ⋯ + 𝛷7 = 𝛷. Записваме 
𝛷1

𝛷
= 2,512(𝑚−𝑚1), т.е. 𝛷1 = 2,512(𝑚−𝑚1)𝛷 =

2,512𝑚

2,512𝑚1
𝛷. 

Образуваме аналогични равенства с 𝛷2, 𝛷3 … 𝛷7 и сумираме левите и десните им страни. Така 

𝛷 = 2,512𝑚𝛷 (
1

2,512𝑚1
+ ⋯ +

1

2,512𝑚7
). Съкращаваме 𝛷, пренасяме 2,512𝑚 от лявата страна и 

логаритмуваме двете страни, достигайки до 𝑚 = −2,5 lg (
1

2,512𝑚1
+ ⋯ +

1

2,512𝑚7
). Заместваме в 

този израз числените стойности в условието на задачата и получаваме 𝑚 ≈ 1,67m. ∎ 



Задача 2. Наблюдения от Ганимед. Вие участвате в космическа експедиция по изучаване на 
Галилеевите спътници на Юпитер. В една нощ, когато се намирате на Ганимед и изпитвате 
носталгия по родната планета, вие преглеждате общопланетния компютърен алманах и се 
опитвате да разберете кога Земята е най-ярка, гледана от Ганимед. Поглеждате към небето и се 
опитвате да я откриете.  

• Определете приблизително видимата звездна величина на Земята, когато тя се вижда от 
Ганимед и е най-ярка. Използвайте дадените справочни данни. Приемете, че когато 
виждаме осветен половината диск на една планета, тя е по-слаба с 1m, отколкото когато е 
осветен целият диск на планетата.  

• Ще можете ли да видите Земята с невъоръжено око? А Луната? Ще можете ли да 
различите Земята и Луната като отделни обекти? (НАО2012-III-9/10) 

Справочни данни: 
Радиус на Земята – 6370 km Албедо на Земята – 0,37              Радиуси на орбитите на: 
Радиус на Венера – 6052 km  Албедо на Венера – 0,67  Венера – 0,723 AU; 
Радиус на Луната – 1737 km  Албедо на Луната – 0,12  Юпитер – 5,20 AU. 
Радиус на орбитата на Луната около Земята – 0,00256 AU 
Звездна величина на Венера в максимална елонгация – −4,6m 

Упътване: Преди малко използвахме за албедо на Земята 0,3. Има два отделни “типа” 
албедо, геометрично албедо и албедо на Бонд, като тук няма да се задълбочаваме върху 
разликите между тях. В тази задача е дадено геометричното албедо, при съпоставяне на 
осветености (както в тази задача) е по-правилно да се използва именно то. 
 
Решение: 
а) Ако знаем видимата звездна величина на Слънцето, решението може да се опрости 
значително, но сега ще решим задачата, използвайки само справочните данни. Да си 
представим Венера в максимална елонгация, но не със съответната й за такава конфигурация 
фаза 0,5, а с фаза 1. Тогава потокът светлина от нея върху Земята в 𝑉 е приблизително равен на 

𝛷𝑉𝑇 =
𝐿𝑣𝑖𝑠

4𝜋𝑟𝑉
2 ∙

𝐴𝑉𝜋𝑅𝑉
2

2𝜋𝑟𝑉𝑇
2  

Тук 𝐿𝑣𝑖𝑠 е частта от светимостта на Слънцето, “попадаща “в 𝑉, 𝐴𝑉 е албедото на Венера, 𝑅𝑉 е 
радиусът на Венера, 𝑟𝑉 е радиусът на орбитата на Венера и 𝑟𝑉𝑇 е разстоянието Венера-Земя при 

максимална елонгация (𝑟𝑉𝑇 = √𝑟𝑇
2 − 𝑟𝑉

2, където 𝑟𝑇 е радиусът на земната орбита). В израза за 
потока отчетохме само отразената от Венера част от слънчевата светлина, пренебрегвайки 
топлинното излъчване на Венера. Това направихме, защото топлинното излъчване е в 
инфрачервената област, а ние се интересуваме от видими звездни величини (в 𝑉), не от 
болометрични. На пръв поглед потокът 𝛷𝑉𝑇 съответства на звездна величина −4,6m. Но 𝛷𝑉𝑇 е 
поток от Венера във фаза 1, а не във фаза 0,5. Съгласно пояснението в условието на задачата, 
𝛷𝑉𝑇 съответства на видима звездна величина 𝑚𝑉 = −5,6m. 
 
За Юпитер Земята е вътрешна планета и би трябвало периодите на най-благоприятната й 
видимост да са около моментите на максимална елонгация на Земята. Нека не забравяме, 
обаче, че спътникът Ганимед няма атмосфера. Това означава, че като закрием Слънцето с ръка, 
ние ще виждаме Земята в черното небе на този спътник, дори когато тя е на малко ъглово 
отстояние от Слънцето. В момент, близък до горно съединение, Земята ще е почти изцяло 
обърната към нас с осветената си от Слънцето страна. Това ще я прави по-ярка, отколкото в 
максимална елонгация, въпреки че тогава тя ще е малко по-далеч от нас. Разликата в 
разстоянието няма да оказва съществено влияние върху видимата звездна величина на Земята, 
защото земната орбита има над пет пъти по-малък радиус от орбитата на Юпитер. Разстоянието 
Ганимед-Земя при горно съединение приемаме за разстоянието Юпитер-Земя в същата 
конфигурация, а именно 𝑟𝑇𝐽 = 𝑟𝐽 − 𝑟𝑇 (𝑟𝐽 е радиус на орбитата на Юпитер). Потокът светлина от 

Земята в 𝑉 се дава приблизително с 



𝛷𝑇𝐽 =
𝐿𝑣𝑖𝑠

4𝜋𝑟𝑇
2 ∙

𝐴𝑇𝜋𝑅𝑇
2

2𝜋𝑟𝑇𝐽
2  

Тук 𝐴𝑇  e албедото на Земята, а 𝑅𝑇 е нейният радиус. Сега с формулата на Погсън намираме 
видимата звездна величина 𝑚𝑇 на Земята от Ганимед: 

𝑚𝑇 − 𝑚𝑉 = −2,5 lg
𝛷𝑇𝐽

𝛷𝑉𝑇
= −2,5 lg

𝐴𝑇

𝐴𝑉
∙

𝑅𝑇
2

𝑅𝑉
2 ∙

𝑟𝑉
2

𝑟𝑇
2 ∙

𝑟𝑇
2 − 𝑟𝑉

2

(𝑟𝐽 − 𝑟𝑇)
2 = 5,16 

𝑚𝑇 = −0,44m 
б) Границата на видимост за човешкото око е около 6m. Тъй като 𝑚𝑇 < 6m, Земята лесно ще 
може да се види с невъоръжено око от Ганимед. 
Означавайки албедото на Луната с 𝐴𝐿 и радиуса й с 𝑅𝐿, отношението на потоците от Земята и 
Луната в 𝑉 за Ганимед е 

𝛷𝑇𝐽

𝛷𝐿𝐽
=

𝐴𝑇𝜋𝑅𝑇
2

𝐴𝐿𝜋𝑅𝐿
2  

Съпоставяме чрез формулата на Погсън видимата звездна величина на Луната 𝑚𝐿 с тази на 
Земята: 

𝑚𝑇 − 𝑚𝐿 = −2,5 lg
𝛷𝑇𝐽

𝛷𝐿𝐽
= − 4,04 

𝑚𝐿 = 3,40m 
Луната също ще се вижда от Ганимед с просто око. Остана да проверим дали ще може да се 
различат Земята и Луната като отделни обекти. Означаваме максималното ъглово разстояние 
между Земята и Луната за Ганимед с 𝛿. Тогава 𝑟𝑇𝐿 = 𝛿[rad]𝑅, където 𝑟𝑇𝐿 е радиусът на лунната 
орбита около Земята. Получаваме 𝛿 ≈ 1,4′. Разделителната способност на човешкото око е 
около 1’ – ще можем да различим Луната и Земята, но трудно. ∎ 
 
абсолютна звездна величина 
 
Видимата звездна величина показва колко ярък е даден обект за наблюдателя, а не колко е 
голяма светимостта му всъщност. Например, Сириус, най-ярката звезда на нощното небе, има 
видима звездна величина в 𝑉, равна на −1,46. Звездата 𝜁 Pup има видима звездна величина в 
𝑉, равна на 2,25, но светимостта й е десетки хиляди пъти по-голяма от тази на Сириус. За 
характеризиране на светимостта на звездите е въведена абсолютната звездна величина, която 
представлява видимата звездна величина (болометрична или във филтър) на звезда, ако е 
поставена на 10 pc от наблюдателя. При сравняване на абсолютни звездни величини 
разстоянието до обектите не е фактор. Нека запишем формулата на Погсън за два обекта – 
небесно тяло на разстояние 𝑟 и същото небесно тяло, но преместено на разстояние 𝑟′ = 10 pc: 

𝑚𝑥 − 𝑀𝑥 = −2,5 lg
𝛷𝑥

𝛷𝑥
′
 

Тук 𝑚𝑥 е видимата звездна величина на тялото в произволен филтър 𝑥, 𝑀𝑥 е абсолютната 
звездна величина в 𝑥 на това тяло, 𝛷𝑥 е потокът светлина в 𝑥 от тялото и 𝛷𝑥

′  е потокът светлина в 
𝑥 от тялото, когато то е на 10 pc. Нека с 𝐿𝑥 означим частта от светимостта на тялото, “попадаща” 

в 𝑥. Тогава 𝛷𝑥 =
𝐿𝑥

4𝜋𝑟2
 и 𝛷𝑥

′ =
𝐿𝑥

4𝜋𝑟′2
. Следва, че 𝑚𝑥 − 𝑀𝑥 = −2,5 lg

𝑟′2

𝑟2
= −5 lg

𝑟′

𝑟
. Изразът остава 

верен при еднакви мерни единици на 𝑟′ и 𝑟. Да изразим двете разстояния в парсеци: 

𝑚𝑥 − 𝑀𝑥 = −5 lg
𝑟′[pc]

𝑟[pc]
 

𝑚𝑥 − 𝑀𝑥 = −5 lg
10

𝑟[pc]
 

𝑚𝑥 − 𝑀𝑥 = −5(lg 10 − lg 𝑟[pc]) 
𝑚𝑥 − 𝑀𝑥 = −5 + 5 lg 𝑟[pc] 

Така получихме връзката между видима и абсолютна звездна величина на даден обект. Нея, 
разбира се, може да запишем и с болометрични звездни величини (болометрична видима и 



болометрична абсолютна). Величината 𝜇 = 𝑚 − 𝑀 за даден обект се нарича модул на 
разстоянието, тъй като стойността й зависи едиствено от разстоянието до обекта. 
 
Както казахме, абсолютните звездни величини на телата не се влияят от разстоянията до тях. 
Лесно може да покажем, че 

𝑀1 − 𝑀2 = −2,5 lg
𝐿1

𝐿2
 

𝑀1 и 𝑀2 са абсолютните болометрични звездни величини на две тела, а 𝐿1 и 𝐿2 са техните 
светимости. За пореден път подчертаваме, че абсолютните болометрични звездни величини не 
са равни на абсолютните звездни величини в 𝑉. Зависимостта между двете се задава с 

𝑀𝑉 + 𝐵𝐶 = 𝑀 
𝐵𝐶 е т.нар. болометрична поправка. Тя има характерна стойност за отделните звезди. За 
Слънцето стойността й е около −0,09 и обикновено тя се пренебрегва. За някои звезди, обаче, 
стойността й е около −4. 
 
Когато говорим за обекти от Слънчевата система, понятието абсолютна зведна величина има 
различен смисъл. Абсолютната звездна величина на един такъв обект е видимата звездна 
величина (болометрична или във филтър), която той би имал за наблюдател в центъра на 
Слънцето, ако е поставен на 1 AU от наблюдателя. 
 
закон на Ламберт 
 
Да разгледаме равнина, върху която се разпределя поток светлина 𝛷 от успореден сноп лъчи. 
Ако равнината има площ 𝑆 и е перпендикулярна на направлението на лъчите, то осветеността за 

точките по нея ще бъде 𝐸 =
𝛷

𝑆
. Нека завъртим равнината на ъгъл 𝜃 спрямо началното й 

положение. Тогава целият поток 𝛷 ще се разпределя върху площ 
𝑆

cos 𝜃
 (вж. чертежа), при което 

осветеността за точките от завъртяната равнина ще е 𝐸′ =
𝛷

𝑆
cos 𝜃 = 𝐸 cos 𝜃. Фактът, че 

осветеността за дадена повърхност зависи от косинуса на ъгъла на падане на лъчите, е в 
основата на закона на Ламберт. Когато в някой наблюдателен пункт на Земята височината на 
Слънцето над хоризонта намалява, ще намалява също и осветеността за земната повърхност.  

• Защо при наблюдения на обекти с телескоп осветеностите, отчетени от приемника, не се 
влияят от ъгъла на падане на лъчите към него? 

 

светлинно налягане 
 

Предварително споменаваме, че връзката между импулс 𝑝 и енергия 𝐸 на фотон е 𝑝 =
𝐸

𝑐
, където 

𝑐 е скоростта на светлината във вакуум. Нека на разстояние 𝑟 от звезда със светимост 𝐿 е 
разположено голямо плоско огледало с площ 𝑆, което е ориентирано перпендикулярно на 

радиус-вектора. За време 𝛥𝑡 върху огледалото ще идва поток енергия 𝛥𝐸𝑠 =  
𝐿𝑆𝛥𝑡

4𝜋𝑟2. Той ще 



представлява сумарната енергия на всички фотони от звездата, достигащи огледалото за време 

𝛥𝑡. Затова 𝛥𝐸𝑠 = 𝛥𝑝𝑠𝑐, където 𝛥𝑝𝑠 е сумарният импулс на тези фотони, т.е. 𝛥𝑝𝑠 =
𝐿𝑆𝛥𝑡

4𝜋𝑟2𝑐
. 

 
Когато фотоните от звездата достигнат огледалото, те ще се отразяват обратно към звездата. За 
всеки фотон с импулс 𝑝 и огледалото може да запишем закона за запазване на импулса, 𝑝 + 0 =
𝑝1 − 𝑝, като тук 𝑝1 = 2𝑝 е импулсът, придаден на огледалото от фотона (в дясната страна 
писахме минус, защото фотонът е обърнал посоката си). Така за време 𝛥𝑡 на огледалото се 

придава общо импулс 𝛥𝑝 = 2𝛥𝑝𝑠 =
𝐿𝑆𝛥𝑡

2𝜋𝑟2𝑐
. В резултат на това върху огледалото ще действа сила, 

насочена обратно на радиус-вектора: 𝐹 =
𝛥𝑝

𝛥𝑡
=

𝐿𝑆

2𝜋𝑟2𝑐
. Ако бележим с 𝐴 осветеността от звездата 

на разстояние 𝑟, то 𝐹 =
2𝐴𝑆

𝑐
. Силата на единица площ от платното се дава с 𝑃 =

𝐹

𝑆
=

2𝐴

𝑐
. 

Величината 𝑃 наричаме светлинно налягане. 
 
Ако огледалото, което разглеждахме, е достатъчно голямо, светлинното налягане би оказвало 
значителен ефект и огледалото (с какъвто товар е прикачен към него) би могло да се движи 
свободно в околностите на звездата. Такива апарати наричаме слънчеви платна.  

• Защо е по-изгодно слънчевите платна да се правят огледални, а не черни? 

 
ЗАДАЧИ 
 
Задача 3. Модели на небето. Да предположим, че всички звезди имат еднаква светимост. 
Определете отношението 𝑘 на броя на звездите със звездна величина по-малка или равна на 
𝑚 + 1, към броя на звездите със звездна величина по-малка или равна на 𝑚, които бихме 
виждали по цялото небе. Разгледайте следните случаи:  

• Звездите са равномерно разпределени в пространството.  

• Звездите са равномерно разпределени в плосък слой. Наблюдателят също се намира в 
слоя.  

Таблицата съдържа данни за общия брой звезди със звездна величина по-малка или равна на 
дадена звездна величина, които действително се виждат на небето. Разгледайте я внимателно 
и дайте обяснение за разпределението на звездите по различни звездни величини. (НАО2005-
IV-β) 
 

Звездна 
величина 

Общ брой 
Звездна 

величина 
Общ брой 

Звездна 
величина 

Общ брой 

0 3 5 1466 10 380200 

1 11 6 4732 11 1026000 

2 39 7 15000 12 2588000 

3 133 8 46240 13 5894000 

4 446 9 139300 14 13120000 

 
Задача 4. РадиоАстрон. Проектът РадиоАстрон е международна мисия, водена от Центъра по 
астрофизика към РАН. На 18 юли 2011 г. сателит, Спектър-Р, носещ 10-метров космически 
радиотелескоп, е изстрелян в елиптична орбита около Земята. Заедно с наземни 
радиотелескопи, Спектър-Р работи като интерферометър. РадиоАстрон работи във филтрите K 
(1,19-1,63 см), C (6,2 см), L (18 см) и P (92 см). В днешно време Спектър-Р се движи по силно 
ексцентрична орбита с период 8,3 дни и височина в перигей 600 км. 

• Оценете максималната разделителна способност на РадиоАстрон. Придружете отговора 
си със схема, показваща ситуацията, при която тя се достига. 

• Оценете максималната разделителна способност на РадиоАстрон, с която може да 
наблюдаваме обекти по направление на апсидната линия на орбитата на Спектър-Р. 
Отново придружете отговора си със схема.  



• Gliese 581 g е най-подобната на Земята открита досега планета и екзопланетата,  
призната за най-пригодна за развитие на базиран на белтъци живот. Оценете 
орбиталния период на планетата, считайки орбитата й за кръгова. Може ли чрез 
наблюдения на РадиоАстрон да се определи размерът на Gliese 581 g? Отговора 
обосновете с изчисления. (IAO2013-β)  

Справочни данни: 
Маса на Gliese 581 – 0,31 M⊙ 
Паралакс на Gliese 581 – 160 mas 
Болометрична звездна величина на Gliese 581 – 8m 

Абсолютна болометрична звездна велична на Слънцето – 4,74m 
 
Задача 5. Земната орбита. В една задача от II кръг на олимпиадата от дълбините на космоса се 
беше появила черна дупка, която прелита през Слънчевата система. В резултат от въздействието 
й оста на Земята става перпендикулярна на равнината на земната орбита, а земната орбита 
става по-издължена елипса. Голямата полуос на орбитата на нашата планета се запазва същата, 

каквато е сега. При преминаването през перихелия за умерените ширини (45) осветеността от 
Слънцето по пладне е същата, както сегашната осветеност за същите ширини по пладне при 
лятно слънцестоене. 

• Определете ексцентрицитета на новата орбита на Земята. 

• Намерете продължителността на слънчевото денонощие при преминаването на Земята 
през перихелия и през афелия на орбитата. 

Считайте, че сегашната орбита на Земята е кръгова, а наклонът на земната ос към оста на 

еклиптиката е 23,5. (НАО2014-IV- β) 
 
Задача 6. Новолуние. Звездната величина на Луната в пълнолуние е −12m, 7. Каква е звездната 
величина на Луната в новолуние? (НАО2001-III-9/10) 
Упътване: Известно е, че дори във фаза новолуние, Луната в повечето случаи изглежда като 
много тънък сърп, тъй като поради наклона на лунната орбита към еклиптиката Луната в 
новолуние не се намира точно на правата, свързваща Земята и Слънцето. При тази задача 
светенето на тънкия сърп на Луната в новолуние да не се разглежда и размерите му в 
сравнение с тези на "тъмната" част от Луната да се пренебрегнат.  
 
Задача 7. Плутон. Гледан от Земята с неголям телескоп, (134340) Pluto е звездообразен обект с 
визуална звездна величина в опозиция 𝑚 = 13m, 93. Това е така, защото тази планета-джудже 
се намира на разстояние 31,28 AU от Слънцето. Днес знаем, че Плутон има пет спътника, като 
четири от тях са много малки, а петият – Харон (Charon) е само два пъти по-малък от Плутон.  
Докато радиусът на Плутон е 1195 км, радиусът на Харон е 600 км. Орбитата на Харон е кръгова, 
с радиус 19600 км. Каква е звездната величина на Харон в „пълнолуние”, гледан от тази част на 
повърхността на Плутон, която е обърната към него, и за която спътникът е близо до зенита? 
(НАО2007-III-9/10) 
 
Задача 8. Съзвездието Бял леопард. Според една древна волжка легенда в миналото на 
небето е имало съзвездие, наречено Бял леопард (Pardus Album), в което броят звезди бил 
равен точно на броя букви в гръцката азбука, като звездната величина на 𝛼 PaA била 
+0,1m, на 𝛽 PaA била +0,2m, на 𝛾 PaA била +0,3m, на 𝛿 PaA била +0,4m, и така до 𝜔 PaA. 
Изчислете сумарната звездна величина на звездите в съзвездието. (IAO2015-β) 
 
Задача 9. Вега в огледало. Вътре в камера по главната оптична ос на обектива е поставено 
плоско огледало, както е показано на схемата. Дължината на огледалото е равна на половината 
от фокусното разстояние на обектива. Фотоплака е поставена във фокалната равнина на 
камерата. На нея са получени два образа на звездата Вега с различна яркост. Вега не се намира 



на главната оптична ос. Разстоянието между оптичната ос и образа 𝛴1 (вж. схемата) е 
𝑟

2
, където 𝑟 

е радиусът на обектива. Намерете разликата между фотографските звездни величини на двата 
образа на Вега. (IOAA2014) 
 

Задача 10. Чайник. Един от най-големите телескопи в света се намира в Специалната 
астрофизическа обсерватория на Руската академия на науките. Диаметърът на огледалния му 
обектив е 𝐷 = 6 m, а фокусното му разстояние е 𝐹 = 24 m. Достатъчна ли би била светлината на 
пълната Луна, за да сварим чай в главния фокус на телескопа? (НАО2003-IV-β) 
Упътване: Разгледайте абсолютно прозрачен съд с абсолютно черен чай.  
 
Задача 11. Астроном и биолог. Астроном, намиращ се на Земята, наблюдава кълбовиден 
звезден куп, който има ъглов диаметър 𝛼 и съдържа 𝑁 звезди, всяка от които има една и съща 
абсолютна звездна величина 𝑀0. Разстоянието от купа до Земята е 𝐷. Представете си, че един 
биолог се намира в центъра на кълбовидния звезден куп.  

• Каква е разликата между сумарната видима звездна величина на всички звезди от купа, 
наблюдавани от астронома, и сумарната видима звездна величина на всички звезди от 
купа, наблюдавани от биолога? Приемете, че пространственото разпределение на 
звездите в купа е равномерно и че биологът може да вижда цялото небе.  

• Телескоп с какъв диаметър трябва да използва астрономът, за да вижда през него 
звездния куп с такава яркост, с каквато биологът вижда купа?  

• Каква би била разлика между видимите звездни величини, наблюдавани от двамата 
учени, ако зрителното поле на биолога е ограничено до кръг с ъглов диаметър, равен на 
𝛼? (IOAA2012) 

 
Задача 12. Космическо платно. За изпращане на апарат до крайните му цели в астероидния 
пояс се използва слънчево платно. Апаратът с маса 𝑚 = 1 тон първоначално се движи около 
Слънцето по кръгова орбита с радиус 1 AU. Тогава платното се отваря и след половин обиколка 
около Слънцето апаратът достига Церера. Оценете площта 𝑆 и дебелината 𝑑 на платното. 
Приемете, че платното е от огледален тип. Типичните разстояния от астероидите до Слънцето са 
около 2,8 AU. Слънчевата константа е 𝐴 = 1,37 kW/m2. (IAO2007-β) 
 
Задача 13. Слънчеви платна и двигатели на Бъсард*. В далечната 2117 година световните 
лидери решават да изпробват нов начин да междузвездно пътуване. Те събират експерти, които 
с помощта на най-новите нанотехнологии създават изключително тънък и здрав материал с 
албедо 𝐴 = 1, който да се използва за построяване на междузвездни платна, задвижвани 
единствено от слънчевата светлина. Три такива платна с площ 𝑆 = 13,2 km2 и маса 𝑚 = 5000 kg 
ще бъдат пуснати много близо до повърхността на Слънцето, за да бъдат изпратени към 
звездите α Cen A, α CMa и α CMi, на разстояния съответно 1,34 pc, 2,64 pc, 3,51 pc, като ще 
събират енергия от Слънцето, обърнати перпендикулярно на слънчевите лъчи (платната могат и 
да се въртят). 
 



Екип от учени приемат тази инициатива като предизвикателство и започват да работят по 
подобен проект. Те проектират космически кораб с маса 𝑀 = 50000 kg, захранван от т.нар. 
двигател на Бъсард, създаващ силно електромагнитно поле, което в открития космос може да 
събере водородните атоми в радиус около кораба 𝑅 = 22,5 km. Събраните атоми се включват в 
CNO термоядрен цикъл с регулируема скорост, който се описва със сумарното уравнение 4 H1

1 →
He2

4 + 2𝜈𝑒 + 3𝛾. Излишните хелиеви атоми се изхвърлят обратно в открития космос, а с 
освободената енергия (3𝛾 ⇔ 26,8 MeV) се захранват лазери, които ускоряват кораба напред.  
 
Едновременно със слънчевите платна, три космически кораба с двигател на Бъсард се 
изстрелват към трите звезди с начална скорост 𝑣0 = 100 km/s от космическа станция около 
Нептун. 
 
Макар и гореописаните начини за междузвездно пътуване да са много неефективни в 
сравнение с други, космическите програми тук се осъществяват със символична цел, т.к. за тях 
на практика не е нужно гориво при междузвездното пътуване. Поради това не е нужно 
апаратите да намалят своята скорост при достигането на целите си. 

• Намерете скоростта на слънчевите платна на много голямо разстояние от Слънцето. 

• Каква е максималната скорост, която може да се достигне с двигателите на Бъсард? 
Намерете началните ускорения на корабите с двигател на Бъсард, не отчитайки 
гравитационното ускорение от Слънцето. 

• Кой от двата апарата ще достигне първи до всяка от трите звезди? Обяснете как това 
зависи от разстоянието до звездите. 

Концентрацията на атомите в Слънчевата околност е 𝑛 = 1 атом/cm3. Приемете, че всички тези 
атоми са водородни. 
Справочни данни: 
1 eV (електронволт) = 1,6 × 10−19 J , 
т.е. 1 MeV (мегаелектронволт) = 1,6 × 10−13 J 
Упътване: В дадената ядрена реакция частиците 𝜈𝑒 нямат отношение към решението на 
задачата. Силата на съпротивление на междузвездната среда за дадено тяло е 
пропорционална на напречното му сечение спрямо посоката на движение. Движение с 
променливо ускорение може да се разгледа като поредица от равноускорителни движения с 
фиксирано ускорение в малки интервали от време. За корабите с двигатели на Бъсард 
изхвърлените в пространството хелиеви атоми не влияят върху импулса. 
 
Задача 14. Земен климат*. Да си представим, че Земята навлиза в ледена епоха, при което 
средната температура на повръхността й става 𝑇 = −11,0° C. Млад учен предлага интересна 
идея – за да се увеличи температурата на Земята, две гигантски плоски огледала с радиус 𝑅 ще 
се поставят в точките на Лагранж L4 и L5. Огледалата ще отразяват слънчева светлина към 
Земята, така повишавайки осветеността от Слънцето. В резултат на това средната температура 
на Земята нараства с 𝛥𝑇. Орбиталният радиус на Земята е 𝑟, като 𝑅 ≪ 𝑟. 

• Намерете стойността на 𝑅, за която всяко от огледалата става ярко колкото пълната Луна. 

• Намерете максималната възможна стойност на 𝛥𝑇. 

• Използвайки графичен или числен метод, намерете стойността на 𝑅, за която 𝛥𝑇 =
26,0° C. Такива огледала биха възстановили днешния климат. 

 



16. ЗВЕЗДНА АСТРОФИЗИКА 
 
устройство на звездите 
 
Звездите се образуват от облаци газ и прах, претърпяващи колапс (т.е. свиващи се) под 
действие на гравитационните сили. Свиването на такива облаци продължава, докато налягането 
на газа не стане достатъчно голямо, че да компенсира гравитационните сили, при което се 
достига хидростатично равновесие. 
 
Задача 1. Звездообразуване. За колко време би колапсирал сферичен газово-прахов облак с 
начална средна плътност 𝜌0 = 2 × 10−15 kg/m3? 
 
Решение: 
Може да приемем, че цялата маса на облака е съсредоточена в центъра му (вж. §2.). Да вземем 
частица по края на облака. Времето за колапс е времето, за което частицата би паднала в 
центъра на облака под действие на гравитационните сили. Това падане може да се представи 
като движение по изродена елипса. Означайки радиуса на облака с 𝑟, голямата полуос на тази 

елипса ще е 
𝑟

2
. Масата на облака се дава чрез 𝑀 =

4

3
𝜋𝑟3𝜌0. Тогава може да намерим периода по 

елипсата 𝑇 с 

(
𝑟
2)

3

 𝑇2
=

4
3 𝛾𝜋𝑟3𝜌0

4𝜋2
 

Периодът е 𝑇 = √
3𝜋

8𝛾𝜌0
. Обаче времето за падане не е 𝑇, а 𝑡 =

𝑇

2
. Затова облакът колапсира за 

време 𝑡 = √
3𝜋

32𝛾𝜌0
≈ 50000 yr. Както споменахме, колапсът ще спре в някакъв момент, но тогава 

облакът вече ще има радиус, изключително малък спрямо оригиналния такъв, т.е. нашите 
пресмятания все пак дават добра оценка. ∎ 
 
Нека изследваме условията за хидростатично равновесие. Разглеждаме тънък 
цилиндричен стълб в звезда, започващ от повърхността й и спускащ се до 
центъра й. От стълба взимаме малък отрязък на разстояние 𝑟 от центъра, имащ 
ширина 𝛥𝑟 и налягания в двата края 𝑃1 и 𝑃2. За да има равновесие, отрязъкът 
трябва да е неподвижен, т.е. действащата му гравитационната сила да се 
уравновесява със силата, породена от разликата в наляганията. Първата сила е 

равна на 
𝛾𝑀(𝑟)𝑆𝛥𝑟𝜌(𝑟)

𝑟2 , където 𝑀(𝑟) е частта от звездната маса, вписана в сфера с 

радиус 𝑟, а 𝜌(𝑟) е плътността на звездата на разстояние 𝑟 от центъра й. Втората 

сила е равна на 𝑆(𝑃2 − 𝑃1) = 𝑆𝛥𝑃. Приравняваме ги и стигаме до 
𝛥𝑃

𝛥𝑟
=

𝛾𝑀(𝑟)𝜌(𝑟)

𝑟2 . 

Лявата страна на този израз има смисъл на изменението на налягането в 
звездата с доближаването към нейния център. 
 
Чрез тази зависимост може да се оцени налягането в центъра на дадена звезда; 
за Слънцето, например, налягането е около 3,5 × 1016 Pa. Температурата там е 
около 1,5 × 107 K. Именно такива огромни стойности позволяват в звездните 
ядра да протичат термоядрени реакции, благодарение на които звездите 
излъчват енергия. Достатъчно високи температури се достигат само при колапса 
на по-масивните газово-прахови облаци. Ако масата е под 0,08 M⊙, не се 

образува звезда, а кафяво джудже. 
 
Термоядрените реакции в звездите представляват ядрен синтез, процес, при 
който атомни ядра се обединяват в по-тежки такива, при което се отделя енергия (примерна 



реакция на схемата). В такива реакции общата маса на частиците в началото е повече от общата 
маса на получените частици в края, въпреки че броят протони и неутрони се запазва при 
реакцията. Разлика в масата се превръща в енергия съгласно известната зависимост 

𝛥𝐸 = 𝛥𝑚𝑐2 
Причината за разликата в масата е т.нар. масов дефект – масата на дадено атомно ядро е по-
малка от общата маса на съставните му части (напр. масата на ядро на хелий-4 e по-малка от 
масата на два протона и два неутрона). 

• С колко процента на година намалява масата на Слънцето поради неговото излъчване? 
(IAO2011-β) 

 
Голямата част от термоядрените реакции в звездите представляват превръщане на водород в 
хелий. Това става по два основни начина, p-p цикъл и CNO цикъл. При високи температури на 
звездното ядро посредством CNO цикъла се отделя много повече енергия, отколкото при 
протон-протонния цикъл. При по-ниски температури, обаче, доминира p-p цикълът. 

• По графиката определете за Слънцето дела на CNO цикъла при производството на 
енергия. Мащабът по Oy е логаритмичен, а не линеен. 

 
абсорбционни и емисионни спектри 
 
Звездите, както преди споменахме, са в добро 
приближение АЧТ, т.е. спектрите им са подобни на тези 
на АЧТ. Ще има, обаче, известни разлики.  
 
Установено е, че когато АЧТ източник се гледа през 
слой от по-студен газ с по-ниско налягане, в спектъра 
на източника се наблюдават абсорбционни линии, 
като съответстващите им дължини на вълната зависят 
от химичния състав на газа. 
 
Спектрите на звездите са осеяни с абсорбционни линии (вж. 
пример). Това се получава, тъй като наблюдаваме 
излъчването на ядрото през по-студените повърхностни 
слоеве на звездата. Съответно, по линиите в звездните 
спектри може да се установи присъствието на конкретни 
химични елементи в звездите. 
 



Когато източникът е просто горещ газ, видът на спектъра е съвсем различен (вж. пример). В него 
ще се открояват емисионни линии. Отново, техните дължини на вълната зависят от състава на 
газа.  

 
спектрални класове 
 
Звездите, в зависимост от линиите в спектрите си и съответно в зависимост от температурите си, 
могат да се причислят към показаните в таблицата спектрални класове. 
 

Тъй като кафявите джуджета имат температури, 
значително по-ниски от звездните, в тяхната класификация 
се използват други три спектрални класа – L, T и Y (от L към 
Y температурата намалява). 
 
Всеки клас се разделя на десет подкласа, обозначавани с 
цифри от 0 до 9. По-голяма цифра означава по-студена 
звезда. Спектралният клас на Слънцето е G5, а на Вега – 
A0. 

 
диаграма на Херцшпрунг-Ръсел 
 
Нека вземем достатъчно голяма извадка от 
звезди и ги разположим на диаграма, по 
абсцисата на която е спектралният клас и по 
ординатата на която е светимостта. Тя се 
нарича диаграма спектър-светимост или 
диаграма на Херцшпрунг-Ръсел (HR 
диаграма) и изглежда по характерен начин: 
 
Видът й ще е същият, стига по Ox да има какъв 
да е индикатор за светимостта, напр. 
абсолютна болометрична звездна величина, и 
по Oy да има индикатор за температурата, 
напр. цветен индекс.  
 
Цветният индекс на звезда представлява 
разликата в звездните й величини в два 
отделни филтъра. Най-често се борави с 
цветния индекс 𝐵 − 𝑉.  

клас цвят температура 

O син ≥30000 K 

B синьо-бял 10000-30000 K 

A бял 7500-10000 K 

F жълто-бял 6000-7500 K 

G жълт 5200-6000 K 

K оранжев 3700-5200 K 

M червен 2400-3700 K 



Тъй като звездната величина на Вега във всеки филтър е по дефиниция нула, за нея всички 
цветни индекси също са нула. За по-горещите от Вега звезди максимумът на излъчването е 
отместен към синия край на спектъра (от закона на Вин) и съответно цветните индекси са 
отрицателни (𝐵 < 𝑉, 𝐵 − 𝑉 < 0). Обратно, за по-студените от Вега звезди те са положителни. 
 
Звездите по HR диаграмата се делят на няколко класа светимост: 
Ia, Ib – свръхгиганти; II – ярки гиганти; 
III – гиганти; IV – субгиганти; 
V – звезди от главната последователност (джуджета); 
VI – субджуджета; VII – бели джуджета. 
 
еволюция на звездите 
 
След установяването на хидростатично равновесие, звездите се разполагат върху главната 
последователност, където прекарват по-голямата част от живота си, превръщайки водород в 
хелий. При звездите от главната последователност масата и светимостта са свързани. 
 
Задача 2. Връзката маса-светимост. Известно е, че за звездите от главната последователност 

съществува връзка между масата и светимостта от вида 𝐿[L⊙] = 𝑀[M⊙]
𝛼

. По дадените 

характеристики на 20 звезди определете стойността на 𝛼. В таблиците 𝑀/𝑀⊙ е маса, изразена в 
слънчеви маси, 𝜋 е паралакс, 𝑚𝑉 е видима звездна величина в 𝑉 и 𝐵𝐶 е болометрична 
поправка. Абсолютната болометрична звездна величина на Слънцето е 𝑀′ = 4,72m. 
(МосАО2016-II-10/11) 

 
 

 
 
 
 
 
 

Решение: 
За да намерим 𝛼, първо ще логаритмуваме двете 

страни на 
𝐿

𝐿⊙
= (

𝑀

𝑀⊙
)

𝛼

, получавайки 

lg(𝐿/𝐿⊙) = 𝛼 lg(𝑀/𝑀⊙). Записваме зависимостта за 

два отделни “комплекта” стойности на lg(𝐿/𝐿⊙) и 
 lg(𝑀/𝑀⊙), след което изваждаме двете записани 

уравнения, достигайки до 𝛼 =
𝛥 lg(𝐿/𝐿⊙)

𝛥 lg(𝑀/𝑀⊙)
. 

 
Ще построим графика, на която по абсцисата е  
lg(𝑀/𝑀⊙) и по ординатата е lg(𝐿/𝐿⊙), и ще нанесем 
на нея двадесетте звезди. Ще получим lg(𝐿/𝐿⊙) за 
отделните звезди като намерим 

-   разстоянието до тях 𝑟[pc] =
1

𝜋[′′]
 

-   абсолютната им звездна величина в 𝑉 
𝑀𝑉 = 𝑚𝑉 + 5 − 5 lg 𝑟[pc] 

-   абсолютната им бол. зв. величина 𝑀 = 𝑀𝑉 + 𝐵𝐶 

-   и приложим 𝑀 − 𝑀′ = −2,5 lg (
𝐿

𝐿⊙
). 

No. 𝑀/𝑀⊙ 𝜋[′′] 𝑚𝑉 Спектрален клас 

1 0,49 0,170 8,0 M1V 

2 0,49 0,105 8,9 M1V 

3 0,49 0,129 8,5 M1V 

4 0,43 0,114 11,0 M2V 

5 0,43 0,104 9,4 M2V 

6 0,43 0,129 10,5 M2V 

7 0,36 0,123 11,0 M3V 

8 0,20 0,207 11,2 M4V 

9 0,28 0,180 11,1 M4V 

10 0,28 0,141 11,7 M4V 

11 0,18 0,224 12,3 M5V 

12 0,16 0,105 12,8 M5V 

13 0,14 0,115 13,3 M6V 

14 0,10 0,145 13,6 M6V 

15 0,10 0,387 12,5 M6V 

16 0,09 0,387 13,0 M4V 

17 0,08 0,278 14,8 M8V 

18 0,09 0,192 14,1 M7V 

19 0,09 0,230 13,4 M7V 

20 0,08 0,246 14,5 M8V 

Спектрален клас 𝐵𝐶 

G0 -0,03 

G5 -0,07 

K0 -0,60 

K5 -0,19 

M0 -1,19 

M5 -2,30 



Налага се предварително да пресметнем болометричните поправки за спектралните 
подкласове от M1 до M8. Да приемем, че стойността им се изменя линейно в рамките на 
спектрален клас M. Тогава разликата в болометричните поправки между два съседни 

спектрални подкласа е 
−1,19−(−2,30)

5
= 0,222m. Табулираме данните за звездите: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Графиката ще изглежда така: 
 

Точките по нея лежат приблизително на една права. Начертаваме на око тази права. Нейното 
уравнение е от вида 𝑦 = 𝑎𝑥 + 𝑏, като в случая променливата 𝑥 представлява lg(𝑀/𝑀⊙), а 

променливата 𝑦 е lg(𝐿/𝐿⊙). Така 
𝛥𝑦

𝛥𝑥
=

𝛥 lg(𝐿/𝐿⊙)

𝛥 lg(𝑀/𝑀⊙)
= 𝛼. Избираме две точки върху правата и 

измерваме за тях 𝛥𝑦 и 𝛥𝑥. Получаваме 𝛼 = 2,6. ∎ 
 

Връзката маса-светимост принципно има вида 𝐿[L⊙] ≈ 𝑀[M⊙]
3,5

; отклонения се наблюдават 

при най-маломасивните (както в задачата) и най-масивните звезди от главната 

последователност. Използвайки 𝐿[L⊙] ≈ 𝑀[M⊙]
3,5

, може да изведем формула, даваща 

приблизително времето за живот на главната последователност (ГП) за конкретна звезда. 
 
Времето за живот на ГП е на практика времето, за което една звезда ще изчерпи водородните 
си ресурси в ядрото. Затова времето на ГП зависи от масата на звездите – колкото е по-голяма 
масата, толкова повече са водородните запаси. От друга страна, времето зависи и от 
светимостта на звездите – по-ярките звезди излъчват запасите си по-бързо. Тогава можем да 
сравним времето за живот на ГП на Слънцето (𝜏⊙) и на друга звезда (𝜏) по следния начин: 

𝜏

𝜏⊙
≈

𝑀

𝑀⊙
∙

𝐿⊙

𝐿
=

𝑀[M⊙]

𝐿[L⊙]
 

No. 𝑀𝑉 𝑀 lg(𝐿/𝐿⊙) lg(𝑀/𝑀⊙) No. 𝑀𝑉 𝑀 lg(𝐿/𝐿⊙) lg(𝑀/𝑀⊙) 

1 9,1 7,69 -1,20 -0,31 11 14,0 11,70 -2,80 -0,74 

2 9,0 7,59 -1,16 -0,31 12 12,9 10,60 -2,36 -0,80 

3 9,0 7,59 -1,16 -0,31 13 13,6 11,08 -2,55 -0,85 

4 11,2 9,57 -1,95 -0,37 14 14,4 11,88 -2,87 -1,00 

5 9,5 7,87 -1,27 -0,37 15 15,5 12,98 -3,31 -1,00 

6 11,1 9,47 -1,91 -0,37 16 16,0 13,03 -3,33 -1,05 

7 11,4 9,54 -1,94 -0,44 17 17,0 14,03 -3,73 -1,10 

8 12,7 10,62 -2,37 -0,70 18 15,5 12,76 -3,22 -1,05 

9 12,4 10,32 -2,25 -0,55 19 15,2 12,46 -3,10 -1,05 

10 12,4 10,32 -2,25 -0,55 20 16,5 13,53 -3,53 -1,10 



Но 𝐿[L⊙] ≈ 𝑀[M⊙]
3,5

, следователно 𝜏 ≈ 𝜏⊙𝑀[M⊙]
−2,5

. Знаейки, че 𝜏⊙ се оценява на 1010 yr (от 

тях вече са изминали 4,5 × 109 yr), формулата може да се запише като 𝜏[yr] ≈ 1010𝑀[M⊙]
−2,5

. 

Видно е, че масивните звезди умират много бързо. 
 
След като водородните запаси на звезда се изчерпят, по-нататъшната й еволюция зависи от 
нейната маса. 
 
𝑀 < 0,3 M⊙: Тъй като времето върху ГП за тези най-маломасивни звезди надвишава сегашната 
възраст на Вселената, не е наблюдавано какво се случва с тях извън ГП. Предполага се, че с 
превръщането на все повече водород в хелий, температурата на тези звезди нараства. Когато 
материалът за ядрен синтез свърши, звездите бавно се свиват до размерите на Земята, 
превръщайки се в изключително плътни бели джуджета. 

0,3 M⊙ < 𝑀 < 0,5 M⊙: Когато водородът се изчерпи, хелиевото ядро на тези звезди престава 
да синтезира и равновесието в звездата се нарушава, защото вече няма какво да поражда сила, 
уравновесяваща гравитационната. Звездното ядро започва да колапсира, но при колапса 
звездата се нагрява и започва синтез на хелий в “черупка” около ядрото – равновесието се 
възстановява. При този процес звездата увеличава радиуса си многократно. Тя преминава 
бързо през клона на субгигантите по HR диаграмата и накрая се превръща в червен гигант. Той 
е в равновесие, но бавно увеличава светимостта си. След като синтезът на хелий в черупката 
около ядрото приключи, колапсът започва наново. Звездата изхвърля външните си слоеве, а 
ядрото й се оголва и свива. Получават се бяло джудже и планетарна мъглявина около него, 
която е изградена от газовете на изхвърлените слоеве на звездата. 

0,5 M⊙ < 𝑀 < 8 M⊙: Звездите в този интервал също се превръщат в червени гиганти. Когато в 
черупката около ядрото хелият спре да се произвежда и колапсът стартира, температурата в 
ядрото става достатъчна, че да се започне в него синтез на въглерод от хелий чрез т. нар. троен 
алфа-процес. Равновесието се възстановява и звездата се премества наляво по HR диаграмата, 
в повечето случаи попадайки по нея в хоризонталния клон на гигантите. Отбелязваме, че за 
0,8M⊙ < 𝑀 < 2,25M⊙ началото на процеса на горене на хелий е много бурно и се 
характеризира с хелиево избухване. При него се отделя огромна енергия, но в голямата си част 
тя не достига повърхностните слоеве на звездата.  
 
Когато запасите на хелий в ядрото свършат, отново започва колапс и за да възстанови 
равновесието, звездата преминава към следващия етап от еволюцията си – горене на водород и 
хелий в черупки около въглеродното ядро. Тя се премества по HR диаграмата на асимптотичния 



клон на гигантите и увеличава многократно размерите и светимостта си. Този път при 
свиването на звездата след края на синтеза не се създават достатъчно високи температури за 
започването на нови термоядрени реакции и няма какво да спре звездата да се превърне в 
бяло джудже с планетарна мъглявина (вж. пътя на Слънцето по HR диаграмата). 
 

 
 
За 𝑀 = 1M⊙ времето по клона на субгигантите и 

по клона на червените гиганти е ≈ 2,5 × 109 yr, 
времето по хоризонталния клон е ≈ 1 × 108 yr, 
времето по асимптотичния клон е ≈ 5 × 106 yr и 
времето като бяло джудже е ≈ 1 × 1015 yr, като 
пл. мъглявина се разсейва за ≈ 1 × 104 yr. 

 
 
 
 

 
 
 

𝑀 > 8 M⊙: За най-масивните звезди горенето на въглерод в 
ядрото е възможно. Това става едновременно чрез няколко 
различни реакции, произвеждащи по-тежки елементи – 
кислород, неон, натрий и магнезий. При 𝑀 > 10M⊙ тези 

продукти също се горят от своя страна. Последователният 
синтез продължава, докато не се стигне до желязо. Горенето 
на желязо не отделя енергия, а я консумира. И в последния 
ден от живота си, при приключването на термоядрените 
реакции в ядрото, звездата изглежда като “луковица” с 
желязно ядро в центъра. 
 
Това ядро (Fe за 𝑀 > 10M⊙ и O − Ne − Mg за 8M⊙ < 𝑀 <
10M⊙) започва да колапсира. То има маса над 1,44M⊙, т.нар. 

граница на Чандрасекар. Това означава, че механизмите, 
които принципно прекратяват свиването и превръщат ядрото в бяло джужде, тук не са 
достатъчни за удържането на колапса. В рамките на части от секундата от ядрото се образува 
неутронна звезда, когато колапсът все пак спира, или черна дупка, когато той не спира. 
 

планетарната 
мъглявина M57 



Неутронните звезди имат радиус около 10 km и съответно притежават огромна плътност. 
Магнитните им полета са изключително силни. Някои бързовъртящи се неутронни звезди, 
наречени пулсари, излъчват тесни снопове електромагнитно лъчение откъм двата си магнитни 
полюса. Това лъчение може да бъде наблюдавано само когато сноповете са насочени към 
Земята. Затова наблюдавайки излъчването на пулсар, лесно може да измерим неговия период 
на околоосно въртене. Този период е практически констанен, като някои пулсари са по-точен 
индикатор на време от атомен часовник. 
 
Когато от колапсиращото ядро на звезда се формира неутронна звезда, върху нея с голяма 
скорост се стоварват външните слоеве. Те отскачат от твърдата й повърхност и се създава 
ударна вълна. Звездата избухва като свръхнова. Външните слоеве се изхвърлят със скорост 
около 0,1𝑐 и се осъществява синтез на по-тежки от желязото елементи. Абсолютните звездни 
величини на свърхновите в 𝑉 могат да достигнат −22m, което е по-ярко от галактика. Разбира 
се, блясъкът на свръхновите постепенно спада след достигането на максимална светимост. 
 
 

 
Да разгледаме черните дупки. Повечето от тях се получават, когато нищо не може да спре 
колапса на ядрото на звезда, при което цялата маса на ядрото се свива до нулев обем, до точка. 
Гравитационните сили в близост до тази точка са толкова силни, че в рамките на област около 
нея дори фотоните не могат да се откъснат от привличането. Тази област, съответно, е 
недостъпна за наблюдения от външни наблюдатели. Радиусът й се нарича радиус на 
Шварцшилд. Той е, образно казано, радиусът на черната дупка. 
 
Задача 3. Черна дупка. Намерете радиуса на Шварцшилд 𝑅 за невъртяща се около оста си 
черна дупка с маса 𝑀.  
 
Решение:  
На периферията на областта с радиус 𝑅, т.нар. хоризонт на събитията, само развиване на 
скорост 𝑐 би било достатъчно за напускане на гравитационното поле на черната дупка. Тоест 
скоростта на светлината се явява втора космическа скорост за черната дупка. Тогава 

𝑐 = √
2𝛾𝑀

𝑅
 

𝑅 =
2𝛾𝑀

𝑐2
 

Подчертаваме, че ако черна дупка се върти около оста си, се налага отчитане на допълнителни 
ефекти и решението на задачата е много по-сложно. ∎ 
 
Приливните сили около черните дупки са огромни. Това им позволява да разпадат и поглъщат 
близки до тях обекти. Присъствието на черни дупки може да се установи косвено с 
наблюдението на такива явления. Отбелязваме, че не всички черни дупки имат маси, сравними 
със звездните. В центровете на много от галактиките се намират свръхмасивни черни дупки с 
маси, достигащи милиарди 𝑀⊙. Някои от тях постоянно поглъщат вещество и вследствие на 

остатъкът от 
свръхнова M1 

свръхнова в 
галактиката 

NGC 4526 



това излъчват – такива източници се наричат активни галактични ядра. В тази категория влизат 
квазарите – далечни (𝑟 > 100 Mpc) и много мощни източници на енергия (често 𝐿 > 1014 L⊙). 
 
Когато става дума за еволюция на звездите, особено полезно е изучаването на звездните 
купове, били те разсеяни или кълбовидни. В куповете всички звезди са приблизително на 
еднакво разстояние от наблюдателя, т.е. тяхната HR диаграма може да се построи с видима 
звездна величина по Oy, а не абсолютна. Отделно от това, в куповете всички звезди са на 
приблизително еднаква възраст, т.е. HR диаграмата на звезден куп е практически “снимка” на 
еволюционното състояние на звездите. 

По HR диаграмата на разсеяния звезден куп Хияди главната последователност е ясно 
различима, но към 𝐵 − 𝑉 < 0,1 звезди по нея няма. Това е така, защото въпросните липсващи 
звезди имат по-кратък живот по главната последователност от останалите. Те вече са излезли от 
ГП и са се преместили надясно по диаграмата (вж. звездите при 𝑉 = 4, 𝐵 − 𝑉 = 1). 
Обяснението на по-сложния вид на HR диаграмата за кълбовидните звездни купове оставяме на 
читателя :) (16.9.). 
 
пулсиращи променливи звезди 
 
С движението си по HR диаграмата много от звездите попадат 
на особена област по нея, ивицата на нестабилност. Ивицата 
обхваща няколко класа пулсиращи променливи звезди, които 
периодично променят своите температури и размери, а 
съответно и блясъци.  
 
Най-известни са цефеидите (вж. характерната крива на 
блясъка). Те са свръхгиганти, при които периодът на пулсациите 
и светимостта са свързани – ако измерим периода, на практика 
знаем и светимостта. Така за да намерим разстоянието до 
цефеида, се нуждаем единствено от средната й видима звездна 
величина и нейния период. И двете можем да извлечем само от 
кривата на блясъка. Впрочем разстоянието до най-близката до 
Млечния път галактика, Андромеда, първо е намерено с 
наблюдения на цефеидите в нея.  



Също по ивицата на нестабилност, там, където тя пресича хоризонталния клон на гигантите, 
лежат променливите тип RR Lyr (вж. кривата на блясъка). Техните периоди (0,05-1,2 d) са 
значително по-кратки от тези на цефеидите (1-70 d), въпреки подобните криви на блясъка. Но 
също като цефеидите, те са стандартни свещи, т.е. светимостта им е известна, в случая от 
връзка между период и светимост, а чрез светимостта може да се намери разстоянието до тях. 

Други още по-късопериодични стандартни свещи върху ивицата на нестабилност са 
променливите тип δ Scu (0,02-0,3 d; класове свет. III-V) и тип SX Phe (0,03-0,08 d; субджуджета).  
 
Пулсиращи променливи има и 
извън ивицата на нестабилност. 
Такива са миридите (името идва от 
звездата Мира в съзвездието Кит). 
Те са гиганти от асимптотичния 
клон, имащи както големи периоди, 
така и големи амплитуди. Миридата 
χ Cyg, например, има период около 
400 d и амплитуда във филтър 𝑉 от 
около 11 звездни величини! 
 
 
 
 
 
 



ЗАДАЧИ 

 
Задача 4. p-p цикъл. По-голямата част от енергията, излъчвана от Слънцето, се генерира в 
неговото ядро при верижна реакция, наречена протон-протонен цикъл, която има три различни 
клона. При най-енергетичния клон две ядра на хелий-3 (2 3He) се превръщат в едно ядро на 4He 
и два протона (2 1H). Пресметнете енергията (в MeV), която се освобождава при тази реакция, и 
каква част от масата на частиците, участващи в реакцията, се превръща в енергия. (IOAA2012) 
Справочни данни: 
Маса на ядрото на 4He – 3727,40 MeV/c2 
Маса на ядрото на 3He – 2808,30 MeV/c2 
Маса на протона – 938,27 MeV/c2 
1 eV (електронволт) = 1,6 × 10−19 J , 
т.е. 1 MeV (мегаелектронволт) = 1,6 × 10−13 J 
 
Задача 5. Троен алфа-процес. Оценете колко ядра 12C се образуват в звезда с абсолютна 
звездна величина −0,3m всяка секунда. Делът на горенето на хелий в светимостта на тази 
звезда е 30%. Масите на 4He и 12C са съответно 4,002603 и 12,000000 а.е.м. (РАО2016-V) 
Справочни данни: 
1 а.е.м. (атомна единица за маса) – 1,66 × 10−27 kg 
Упътване: В съкратен вид реакцията на горенето на хелий може да се запише като 3 4He → 
12C + 𝛾 (тук 𝛾 е енергия под формата на гама-лъчи). 
 
Задача 6. Масивен телескоп. Представете си, че наблюдател използва хипотетичен телескоп, 
работещ в далечната инфрачервена област (от 20 до 640 μm). Телескопът е с размерите на 
Земята. Телескопът е открил невъртяща се, електронеутрална, свръхмасивна черна дупка с маса 
2,1 x 1010

 

слънчеви маси. Намерете максималното разстояние, от което телескопът би могъл да 
наблюдава черната дупка като неточков обект. (IOAA2015) 
 
Задача 7. Разстояние до галактиката NGC 6822. Червените гиганти 
са звезди, които се характеризират с инертно хелиево ядро и слой 
“горящ” водород около него. С течение на времето тяхната 
светимост постепенно нараства. Когато светимостта им достигне 
точно определена стойност, която ще наричаме критична, ядрото 
се запалва отново и в него започват реакции на горене на хелия. 
Това води до рязка промяна в параметрите на тези звезди. След 
изчерпване на хелия в ядрото, те са вече с променен строеж и 
химичен състав и част от тях стават по-ярки от критичната за 
обикновените червени гиганти светимост. Този стадий от звездната 
еволюция се нарича Асимптотичен Клон на Гигантите (AGB). 
Звездите преминават през него за по-кратък интервал от време и 
затова те са значително по-малобройни. Червените гиганти и AGB 
звездите са толкова ярки, че могат лесно да бъдат наблюдавани в 
близки галактики. В таблица 1 е даден броят на звездите, 
наблюдавани в галактиката NGC 6822 (галактика джудже в 
Местната група) в различни интервали от звездни величини.  

• Постройте графика, показваща броя звезди в зависимост от 
интервала звездни величини. Тази графика се нарича 
„Функция на светимост”.  

• Като използвате информацията в Таблица 2, опитайте да 
определите разстоянието до тази галактика. В Таблица 2 е 
дадена видимата звездна величина, при която се включват 
хелиевите реакции за 4 други галактики в местната група и 

Таблица 1 

интервал зв. в. брой звезди 

19,0 – 19,2 10 

19,2 – 19,4 10 

19,4 – 19,6 20 

19,6 – 19,8 40 

19,8 – 20,0 60 

20,0 – 20,2 100 

20,2 – 20,4 120 

20,4 – 20,6 150 

20,6 – 20,8 170 

20,8 – 21,0 160 

21,0 – 21,2 170 

21,2 – 21,4 320 

21,4 – 21,6 480 

21,6 – 21,8 680 

21,8 – 22,0 830 

22,0 – 22,2 880 

22,2 – 22,4 980 

22,4 – 22,6 1050 

22,6 – 22,8 1150 

22,8 – 23,0 1300 



техните модули на разстоянието. Представете вашия 
отговор в килопарсеци. (НАО2011-IV-α) 
 

Задача 8. Удивителната звезда. Звездата Мира от съзвездието Кит 
е червен гигант, който се наблюдава като пулсираща променлива 
звезда. Тя дава името на цял клас променливи звезди, наречени 
мириди, които пулсират с много дълъг период, от порядъка на няколкостотин дни. Разполагате 
с крива на блясъка на Мира, получена по данни на Американската асоциация на наблюдателите 
на променливи звезди (AAVSO) за дълъг период от време. В AAVSO членуват стотици астрономи 
любители от цял свят, които работят много ентусиазирано и наблюдават винаги, когато е 
възможно.  

• На какво се дължат прекъсванията в кривата на блясъка и през какъв период от време се 
повтарят?  

• Разграфете хоризонталната ос – оста на времето – в подходящи мерни единици.  

• Определете приблизително периода на изменение на блясъка на пулсиращата 
променлива звезда Мира.  

• Спомнете си колко ярка става Мира в максимума на своя блясък, каква амплитуда има и 
се опитайте да възстановите оцифроването в звездни величини на вертикалната ос. 
(НАО2012-III-9/10) 

Задача 9. Излъчване на пулсар. Пулсар, намиращ се на 1000 рс от Земята, има 10000 пъти по-
голяма светимост от светимостта на нашето Слънце. Нека той излъчва енергия само в две 
противоположни посоки. Енергията се излъчва равномерно в два конуса, с ъгли при върха 4°. 
Приемете, че ъгълът между оста на въртене на пулсара и оста на конуса на излъчване е 30°. Ако 
ориентацията на оста на конуса е случайна, то каква е вероятността наблюдател на Земята да 
регистрира пулсациите? Ако можем да наблюдаваме пулсациите, то каква ще е видимата 
болометрична звездна величина на пулсара, когато снопът е насочен към нас? (IOAA2012)  
 

Задача 10. Начална функция на масите и свръхнови. Еволюцията на единична звезда зависи 
преди всичко от нейната маса, поради което масата е най-важният параметър на звездите. 
Смята се, че разпределението на звездите по маси в момента на тяхното раждане (известно 

Таблица 2 

Галактика кр.зв.в. m-M 

IC 1613 18,13 24,24 

NGC 3109 19,52 25,42 

WLM 18,88 25,12 

Sculptor 13,8 19,7 



също като начална функция на масите, IMF) е универсално. Дадена е IMF в логаритмичен мащаб 
според два различни модела. Диапазонът на грешката е означен за наблюдателните данни. По 
Oy е показан относителният брой звезди с дадена маса (𝛥𝑛/𝛥 lg 𝑀). 

• Темпът на звездообразуване в нашата галактика е 
𝛥𝑀

𝛥𝑡
= 8 M⊙/yr. Звездите с маса над 

8 M⊙ избухват като свръхнови с гравитационен колапс на ядрото. Оценете честотата на 
поява на свръхнови с гравитационен колапс на ядрото в Млечния път. 

• Каква е честотата 𝑓 [yr−1] на поява на непосредствено наблюдаеми свръхнови в 
Млечния път? Ако тази честота е съществено различна от получения в предишната 
подточка резултат, дайте обяснение за това. (IAO2016-αβ) 

Упътване: По графиката на IMF намерете средната маса на свръхнова с гравитационен 
колапс на ядрото 𝑀𝑆𝑁 и частта 𝑞 от масата на образуващите се звезди, която отива за 
свръхнови. 

Задача 11. Фотометрично изследване на звездния куп М15. Широкоивичната фотометрия е 
един от методите за изследване на физическите характеристики на звездните купове. Чрез 
фотографирането им в различни филтри можем да получим много достоверна информация за 
температурите на звездите в тях. Променливите звезди от тип RR Lyrae са често срещани 
пулсиращи променливи звезди в кълбовидните звездни купове. Използват се като стандартни 
свещи за определяне на разстоянието до тях. На предоставената ви диаграма на Херцшпруг-
Ръсел е показано тяхното местоположение в ивицата на нестабилност (област от диаграмата на 
Херцшпрунг – Ръсел, в която се намират всички пулсиращи променливи звезди). От нея се 
вижда, че те образуват хоризонтална ивица в нея. В тази задача предоставяме възможността да 
получите няколко характеристики на кълбовидния звезден куп М15. Разполагате с таблица, 
съдържаща измерените звездни величини на звезди, принадлежащи на този куп, във филтър V 
и техните B-V цветни индекси.  

• Начертайте диаграмата на Херцшпрунг-Ръсел за М15, базираща се на тези данни. С оглед 
на получената диаграма, коментирайте накратко какви типове звезди съдържа този куп. 



• Определете разстоянието до купа. Направете това, използвайки т.нар. хоризонтален 
клон на променливите от тип RR Lyrae. 

• Определете възрастта на М15. 
На диаграмата долу вдясно е показана масата на звездите от главната последователност като 
функция на техния B-V цветен индекс. (НАО2012-IV-β) 
 



Задача 12. Далечни източници*. Разполагате с карта, на която са отбелязани източниците на 
рентгеново излъчване X-1 и X-2, намиращи се в галактиката NGC 1313 в съзвездието Мрежичка. 
По вертикалната ос на картата е отбелязана деклинацията, а по хоризонталната – 
ректасцензията. Освен това са дадени и спектрите на източниците, където спектралните 
плътности на потока са изразени в мерни единици “Краб” (това е излъчването на Ракообразната 
мъглявина в рентгеновия диапазон), като 1 Краб = 2,6 × 10−11 W ∙ m−2 ∙ keV−1. Разстоянието 
до NGC 1313 е 3,7 Mpc. 

• Определете минималните възможни светимости на двата източника. 

• Като приемете, че излъчването на всеки от двата източника се дължи на акрецията 
(падането) на водородна плазма върху компактен обект, оценете минималната 
възможна маса на всеки от тези компактни обекти. 

• Какъв тип обекти са те? 

• Възможно ли е избухването на показаната на картата свръхнова SN 1978K в същата 
галактика да е било причина за светенето на тези обекти? 

Може да приемете, че един фотон взаимодейства с електрон от плазмата, ако попада в 
“напречното сечение” на електрона 𝜎𝑇 = 6,6 × 10−25 cm2 (т.нар. томпсъново сечение на 
електрона). Взаимодействието между фотоните и протоните може да се пренебрегне. 
(СПбАО2017-II-11) 
 
 
 
 
 
 
 
 
 
 
 



 

 
 



17. АТМОСФЕРНО И МЕЖДУЗВЕЗДНО ПОГЛЪЩАНЕ 

 
ТЕОРИЯ 
 
атмосферно поглъщане 
 
Когато преминава през атмосферата, част от светлината на обектите се поглъща. Поради това 
светилата ни се струват по-слаби, отколкото всъщност са. Това явление наричаме атмосферно 
поглъщане (също атмосферна екстинкция). Екстинкцията за определено небесно тяло зависи 
от моментните атмосферни условия и височината на тялото над хоризонта. Екстинкцията на 
видимата светлина в зенита е средно равна на 0,25m (т.е. ако извънатмосферната звездна 
величина на звезда в зенита е 3,13m, ние ще я виждаме като звезда от 3,38m)  

• Приблизително колко процента от потока видима светлина на тяло в зенита се поглъщат 
от атмосферата? 

 
Решение:  
Означаваме с 𝐸𝑉0 потока светлина преди поглъщане, с 𝐸𝑉1 потока светлина след поглъщане, с 
𝑚𝑉0 извънатмосферната видима звездна величина, с 𝑚𝑉1 видимата звездна величина за 

наблюдател на Земята. По формулата на Погсън  𝑚𝑉1 − 𝑚𝑉0 = −2,5 lg (
𝐸𝑉1

𝐸𝑉0
), т.е. 𝑚𝑉0 + 0,25m −

𝑚𝑉0 = −2,5 lg (
𝐸𝑉1

𝐸𝑉0
), при което 

𝐸𝑉1

𝐸𝑉0
= 0,79. Това означава, че се поглъщат приблизително 20% от 

светлината. ∎ 
 
Нека разгледаме как се мени екстинкцията за светилата в зависимост от височината им над 
хоризонта. Да разсъждаваме за произволен наблюдател, пренебрегвайки кривината на Земята 
(вж. чертежа). Лъчите светлина от звезда в зенита ще преминават през определен слой 
атмосфера. Лъчите светлина от звезда със зенитно отстояние 𝑧 ≠ 0° ще преминават през друг, 
по-дълъг слой атмосфера. За да характеризираме дължината му, използваме параметъра 
въздушна маса 𝑋, представляващ отношението на дължината на слоя към дължината на слоя за 

зенита. Както е видно от чертежа, за дадено зенитно отстояние 𝑧 въздушната маса е 𝑋 =
1

cos 𝑧
. 

Екстинкцията за въздушна маса 𝑋 се дава с 𝑛′ = 𝑛𝑋, където 𝑛 е екстинкцията в зенита (както 
казахме, 𝑛 ≈ 0,25m). 

 

Формулата за въздушна маса 𝑋 =
1

cos 𝑧
 е вярна, пренебрегвайки кривината на Земята. Но Земята 

е със сферична форма, така че с увеличаването на зенитното отстояние формулата ще става все 
по-неточна. 
 
Поради екстинкцията с течение на денонощието звездните величини на светилата, гледано от 
Земята, ще се променят. Затова видимите звездни величини, които се дават като справочни 
данни, са извънатмосферни. 
 
 



междузвездно поглъщане 
 
Отделно от атмосферата, междузвездната среда, в която има газ и прах, също поглъща част от 
светлината, идваща от небесните тела. Междузвездната среда поглъща по-силно в по-късите 
дължини на вълната, поради което тя ще пропуска синята светлина по-малко от червената и 
наблюдаваните от нас светила ще изглеждат “по-червени”, отколкото реално са. Затова 
цветният индекс на светилата, който наблюдаваме, е различен от истинския. Разликата между 
наблюдаем и истински цветови индекс наричаме цветови ексцес. Цветовият ексцес за, 
например, цветния индекс 𝐵 − 𝑉, се дефинира като 𝐸𝐵−𝑉 = (𝐵 − 𝑉) − (𝐵 − 𝑉)0, където (𝐵 − 𝑉) 
e наблюдаемият цветен индекс, а (𝐵 − 𝑉)0 е истинският цветен индекс на наблюдаваното 
светило. Това равенство може да се запише и като 𝐸𝐵−𝑉 = 𝐵 − 𝑉 − (𝐵0 − 𝑉0) = (𝐵 − 𝐵0) −
(𝑉 − 𝑉0) = 𝐴𝐵 − 𝐴𝑉. С 𝐵0 и 𝑉0 са означени звездните величини съответно във филтри 𝐵 и 𝑉, 
които светилото щеше да има при липса на междузвездно поглъщане, а 𝐴𝐵 = 𝐵 − 𝐵0 и 𝐴𝑉 =
𝑉 − 𝑉0 са стойностите на междузвездното поглъщане съответно във филтри 𝐵 и 𝑉. 

𝐸𝐵−𝑉 участва в полезната емпирична (т.е. установена чрез наблюдения) зависимост 
𝐴𝑉

𝐸𝐵−𝑉
≈ 3. 

Оценка по порядък за поглъщането във филтър 𝑉 на разстояния до няколко килопарска от 
Слънцето е около 1m/kpc. Разбира се, поглъщането е много различно за отделните участъци по 
небето; за звезди в галактичната равнина екстинкцията е в пъти по-силна, отколкото за звезди 
около галактичните полюси. 

• За някоя звезда, подобна на Вега, междузвездното поглъщане във видимата област на 
спектъра е 2m, 4. На колко е равен наблюдаемият цветен индекс 𝐵 − 𝑉 на тази звезда? 
(РАО2016-V)            

 
оптична дебелина 
 
За характеризиране на поглъщащата способност на дадена среда, напр. атмосферата и 
междузвездното пространство, се използва безразмерен коефициент 𝜏, наречен оптична 

дебелина. По дефиниция 
𝐸0

𝐸1
= 𝑒𝜏, където 𝐸0 е пълният поток лъчение от дадено тяло при 

влизане в поглъщащата среда, 𝐸1 е потокът лъчение от тялото при напускането на средата, а 𝑒 е 
неперовото число. 
 

ЗАДАЧИ 
 
Задача 1. Наблюдение на звезда. Звезда се наблюдава от Земята. Когато звездата е в зенита, 
нейната видима звездна величина е 2m,74. Когато височината й е 45 градуса, звездната 
величина е 2m,85. Каква ще е нейната звездна величина, ако я наблюдаваме извън 
атмосферата? (IAO2010-αβ) 
 
Задача 2. Оптична дебелина. При началото на всяко наблюдение един радио-телескоп се 
насочва към точков източник-стандарт, който има известна стойност на спектралната плътност 
на потока, равна на 21,86 Jy извън атмосферата на Земята. На някаква дата измерената 
спектрална плътност на потока на стандартния източник била 14,27 Jy. Ако по време на това 
наблюдение стандартният източник е бил на височина над хоризонта 35°, то оценете оптичната 
дебелина на атмосферата в зенита 𝜏𝑧. (IOAA2015) 

Упътване: 1 Jy (янски)  =  10−26 W

m2∙Hz
 

 
Задача 3. Две бели джуджета. Стара планетарна мъглявина с бяло джудже в нейния център се 
намира на 50 рс от Земята. В същата посока като това бяло джудже се намира друго бяло 
джудже, идентично с първото, но на разстояние 150 рс от Земята. Считайте, че двете бели 
джуджета имат абсолютни болометрични звездни величини +14,2m и истински цветни индекси 



𝐵 − 𝑉 = 0,300 и 𝑈 − 𝑉 = 0,330. В междузвездната среда и в планетарната мъглявина се 
осъществява поглъщане на светлината. Когато измерваме цветните индекси на по-близкото 
бяло джудже (което се намира в центъра на мъглявината), ние получаваме следните стойности: 
𝐵 − 𝑉 = 0,327 и 𝑈 − 𝐵 = 0,038. В тази част на галактиката междузвездното поглъщане за 
филтрите 𝑈, 𝐵 и 𝑉 е съответно 1,50, 1,23 и 1,00 звездни величини на килопарсек. Пресметнете 
стойностите на използваните по-горе цветни индекси, които бихме получили, ако наблюдаваме 
далечното бяло джудже. (IOAA2012) 

Задача 4. Еднакви звезди. Две звезди имат еднакви физични свойства. Те се наблюдават една 
до друга на небето, но разстоянията до тях са различни. И звездите, и наблюдателят се намират 
в еднородния облак междузвезден прах. Фотометричните измервания за двете звезди във 
филтър 𝐵 дават резултати 11m и 17m, а във филтър 𝑉 резултатите са 10m и 15m. Какво е 
отношението на разстоянията до двете звезди? 
 
Задача 5. Следене на звезда. Ярка звезда е наблюдавана от Мумбай в рамките на една нощ. 
Наблюденията са извършени с 14’’ телескоп в три филтъра (𝐵, 𝑉 и 𝑅). Приемете, че съответните 
им дължини на вълните са 450 nm, 550 nm и 700 nm. С времето звездата променя своето 
зенитнто отстояние, при което нейната светлина преминава през различно дебели слоеве 
атмосфера. Така екстинкцията поради земната атмосфера се променя – тя е минимална, когато 
звездата е в зенита, и максимална, когато звездата изгрява или залязва. Данните са 
представени в таблицата по-долу. Звездните величини са с точност 0,05m. 

• Начертайте подходяща графика и определете извънатмосферната звездна величина на 
звездата в трите филтъра. 

• Цветният индекс може да се използва за намиране на температурата на звездата. 
Емпиричната зависимост между двете величини за региона от HR диаграмата, към който 
звездата принадлежи, се изразява с 𝐵 − 𝑉 = −3,68 lg 𝑇 + 14,55 (тук 𝑇 е температура). 
Оценете звездната температура. 

• По данни на апарата Hipparcos паралаксът на звездата е 0,0076 дъгови секунди. 
Отбележете положението на звездата по HR диаграмата. 

• Ако звездата е от съзвездието Орион, коя от четирите най-ярки звезди от това съзвездие 
е най-добър кандидат за нея? Напишете латинското й име. 

• Да приемем, че в Мумбай екстинкцията е пропорционална 𝜆−𝛼, където 𝜆 е дължината на 
вълната. Използвайки предоставените данни, намерете стойността на 𝛼. (IAO2006-β) 



Задача 6. Космопорт. През 2066 г. в орбита около Земята е построена специална станция, от 
която се изстрелват космически кораби в далечни полети. Орбитата на станцията е кръгова 
екваториална и на височина 400 км над земната повърхност. Вие се намирате на борда на 
изследователски кораб, който също се движи по кръгова екваториална орбита, в същата посока 
като станцията, но на височина 380 км над земната повърхност. В момент на максимално 
сближаване на вашия спътник със станцията, от нея се изстрелва кораб в редовен рейс към 
Луната. Вие виждате блясъка от ракетните струи на неговите двигатели като звезда от звездна 
величина -12m. 

• Колко време след това за вас станцията Космопорт ще се скрие под хоризонта? 
Рефракцията да не се отчита.  

• Коментирайте качествено как рефракцията би повлияла върху описаната по-горе 
ситуация.  

• Опитайте се да получите приблизителна количествена оценка за приноса на 
рефракцията.  

• Миг преди станцията да се скрие под хоризонта, от нея се изстрелва още един кораб и 
блясъкът от ракетните му струи е също толкова мощен, както и при първия кораб. 
Определете приблизително звездната му величина в този момент за вас. Ще можете ли 
да го видите?  

Земната атмосфера поглъща част от светлината на небесните обекти. Когато обектът е в зенита, 
за наблюдател на земната повърхност неговата видима звездна величина се увеличава с 0,29m. 
Слънцето в зенита има зв. величина -26,7m, а на хоризонта – около -16m. (НАО2016-III-11/12) 

Задача 7. Разстоянието до IC 342. В таблица 1 са дадени звездните величини в B, V, R, I, J, H, K, L, 
M, N на две звезди от съзвездието Касиопея. Приема се, че светлината и на двете е повлияна 
само от поглъщането на дифузната междузвездна среда и наблюденията са коригирани за 
поглъщането в земната атмосфера, т.е. работим с извънатмосферни звездни величини. 

• Използвайки данните, дадени в Таблици 1, 2, 3, 4 и 5, начертайте графики за двете 
звезди на отношението  𝐸𝑋−𝑉/𝐸𝐵−𝑉 като функция на 1/𝜆𝑋 за филтрите B, V, R, I, J, H, K, L, 
M, N, като апроксимирате на око с подходящи линии (в частност, обърнете внимание, че  
𝐸𝑋−𝑉/𝐸𝐵−𝑉 ≈ 𝑐𝑜𝑛𝑠𝑡 когато 1/𝜆𝑋 → 0). Тук 𝑋 замества обозначението на всяка една 
звездна величина в съответния филтър, а 𝐸𝐵−𝑉 е цветовият ексцес. 

• Използвайки графиките, получени в предното подусловие, оценете 𝑅𝑉 и 𝑅𝑅 за всяка от 
звездите. 

𝑅𝑉 =
𝐴𝑉

𝐸𝐵−𝑉
 и 𝑅𝑅 =

𝐴𝑅

𝐸𝑅−𝐼
 

𝐴𝑋 е поглъщането във филтър 𝑋. 
Сега ще приложите получените дотук резултати, за да оцените разстоянието до галактиката IC 
342 в съзвездието Касиопея, чиято светлина е отслабена от Млечния път. Може да приемете, че 
свойствата на междузвездната среда в IC 342 са подобни на свойствата на тази среда в Млечния 
път. 

• Използвайте диаграмите период-светимост за 20 цефеиди от IC 342 и приемайки, че за R 
и I са в сила зависимостите период-средна абсолютна звездна величина 

〈𝑀𝑅〉 = −2,91(lg 𝑃[d] − 1) − 4,04 и 〈𝑀𝐼〉 = −3,00(lg 𝑃[d] − 1) − 4,06, 
където са средните абсолютни звездни величини във филтри R и I, намерете 𝐴𝑅 за 
обектите в IC 342. 

• Намерете разстоянието до галактиката IC 432. (IOAA2015) 
 
Таблица 1. BVRIJHKLMN звездни величини на двете звезди в Касиопея. 
 

 

 

звезда сп. клас 𝐵 𝑉 𝑅 𝐼 𝐽 𝐻 K L M N 

HD 4817 K3Iab 8,08 6,18 4,73 3,64 2,76 1,86 1,54 1,32 1,59 - 

HD 11092 K4II 8,66 6,57 - - 3,10 2,14 1,63 1,41 1,65 1,44 



Таблица 2. (𝐵 − 𝑉)0, истински цветни индекси на избрани спектрални класове и класове 
светимост. 

 

 

 

 

 

Таблица 3. Инфрачервени истински цветни индекси на избрани спектрални класове на 
свръхгиганти. 

 
Таблица 4. Инфрачервени истински цветни индекси на избрани спектрални класове на гиганти. 

 

Таблица 5. Ефективни дължини на вълната на избрани фотометрични филтри. 

 

 

 

 

 

 

 

 

 

 

〈𝑅〉 и 〈𝐼〉 са средните видими звездни величини съответно във филтри 𝑅 и 𝐼. 

сп. клас (𝑉 − 𝑅)0 (𝑉 − 𝐼)0 (𝑉 − 𝐽)0 (𝑉 − 𝐻)0 (𝑉 − 𝐾)0 (𝑉 − 𝐿)0 (𝑉 − 𝑀)0 (𝑉 − 𝑁)0 

F0 0,20 0,31 0,36 0,51 0,60 0,64 0,65 0,82 

G0 0,55 0,90 1,14 1,52 1,71 1,72 1,72 1,98 

K0 0,95 1,59 2,01 2,64 2,80 2,87 2,79 3,14 

K3 1,13 1,96 2,41 3,14 3,25 3,39 3,25 3,63 

K4 1,20 2,13 2,59 3,37 3,44 3,62 3,46 3,84 

сп. 
клас 

(𝐵 − 𝑉)0 

II Iab/Ia 

F0 - 0,15 

G0 0,73 0,82 

K0 1,06 1,18 

K3 1,40 1,42 

K4 1,42 1,50 

сп. клас (𝑉 − 𝑅)0 (𝑉 − 𝐼)0 (𝑉 − 𝐽)0 (𝑉 − 𝐻)0 (𝑉 − 𝐾)0 (𝑉 − 𝐿)0 (𝑉 − 𝑀)0 (𝑉 − 𝑁)0 

K0 0,60 1,03 1,23 1,72 1,94 1,97 1,90 1,92 

K3 0,86 1,39 1,84 2,40 2,69 2,82 2,70 2,73 

K4 0,96 1,61 2,16 2,77 3,05 3,22 3,08 3,02 

филтър 𝐵 𝑉 𝑅 𝐼 𝐽 𝐻 𝐾 𝐿 𝑀 𝑁 

𝜆[nm] 450 555 670 870 1200 1620 2200 3500 5000 9000 



Задача 8. Ярки звезди в праховия диск*. На диаграмата е показано съотношението на цветните 
индекси 𝑈 − 𝐵 и 𝐵 − 𝑉 за ярки звезди от каталога BSC (Bright Star Catalog, звезди до 6,5m във 
филтър V). Определете разстоянието до звездите от диаграмата 1, 2 и 3, намиращи се в диска на 
галактиката. Междузвездното поглъщане на светлината в диска на галактиката за слънчевите 
околности е 2m/kpc във филтър V и се мени с дължината на вълната 𝜆 така, както 𝜆−1,3. Кривите 
на пропускливост за филтрите U, B и V са показани на отделна графика. (РАО2013-IV-11) 

 

 



18. ЕФЕКТ НА ДОПЛЕР. КОСМОЛОГИЯ 
 
ефект на Доплер 
 
Нека обект има дадена лъчева скорост спрямо неподвижен наблюдател (за това, което ще 
разглеждаме, тангенциалната скорост не е от значение). Когато с този обект е свързано някакво 
периодично явление, например пулсации, измерената от наблюдателя стойност на периода е 
различна от истинската. Да разясним: 
 
Задача 1. Пулсари. Периодът на пулсара, разположен в центъра на Ракообразната мъглявина, е 
0,0334 s. 

• Намерете максималната и минималната стойност на този период за наблюдател, 
разположен на Земята. През кой сезон той ще е минимален и през кой максимален? 

• В топла лятна нощ към края на юни младият пловдивски астроном Атанас Стефанов 
работи с радиотелескопа в кратера Аресибо и открива нов пулсар с координати 𝛼 =
17h 58m и 𝛿 = +26°. Измерванията, направени в същата нощ, показват, че периодът му 
е 0,0777 s. В какви граници ще се изменя този период при следващите системни 
измервания на Атанас? (НАО2015-IV-α) 

 
Решение: 
а) Ракообразната мъглявина се 
намира в съзвездието Бик и 
съответно може да приемем, че 
лежи на еклиптиката. Гледано от 
Земята, периодът на пулсара ще 
се изменя, тъй като земната 
орбитална скорост има своята 
лъчева компонента спрямо него. 
  
Ще изведем връзката между “лъчевата скорост на пулсара” 𝑣, истинския му период 𝑇0 и 
наблюдаемия такъв 𝑇, като за определеност ще приемем, че пулсарът се отдалечава от Земята. 
Нека в някакъв момент пулсарът се намира на разстояние 𝑟0 от Земята и  единият му сноп 

лъчение е насочен към нея, при което това лъчение достига до Земята за време 𝑡1 =
𝑟0

𝑐
. След 

време 𝑇0 същият сноп на пулсара е отново насочен към Земята, но самият пулсар вече е на 

разстояние 𝑟0 + 𝑣𝑇0 и сигналът достига Земята за време 𝑡2 =
𝑟0+𝑣𝑇0

𝑐
. И така, на Земята двата 

сигнала се засичат през интервал от време (𝑇0 + 𝑡2) − 𝑡1. Именно този интервал е 

наблюдаемият период 𝑇. Тогава 𝑇 = 𝑇0 + 𝑇0
𝑣

𝑐
= 𝑇0 (1 +

𝑣

𝑐
). Тази формула е вярна и когато 

пулсарът се отдалечава от нас, и когато той се приближава към нас (лъчевата скорост има 
съответно положителен/отрицателен знак). 
 
Вече е ясно, че периодът е минимален, когато векторът на орбиталната скорост на Земята е 
насочен точно по направление към пулсара, при което 𝑣 = −𝑣0 (тук 𝑣0 ≈ 30 km/s е земната 

орбитална скорост). Най-малкият период е 𝑇min = 𝑇0 (1 −
𝑣0

𝑐
) = 0,033397 s.  

Аналогично, периодът е максимален, когато орбиталната скорост е насочена обратно на 

направлението към пулсара и 𝑣 = 𝑣0. Най-големият период е 𝑇max = 𝑇0 (1 +
𝑣0

𝑐
) = 0,033403 s. 

 
 
 
 
 



Както е видно от чертежа, периодът на пулсара е най-голям три месеца преди и най-малък три 
месеца след като Слънцето се оказва най-близо до Ракообразната мъглявина на небето. 
Слънцето е в Бик приблизително от 15.05. до 20.06., а мъглявината е почти на границата Бик-
Близнаци по небето. Затова периодът е максимален към 20.03., през пролетта, и минимален 
към 20.09., през есента. 
 
б) Ректасцензията на пулсара на Атанас е приблизително 18h 
и еклиптичната му ширина съответно е 𝛽 = 𝛿 + 𝜀 = 49,5°, 
където 𝛿 = 26° е деклинацията му, а 𝜀 = 23,5° е наклонът на 
земната ос (вж. чертежа).  
 
Векторът на земната орбитална скорост е на еклиптиката и 
този път няма как да е насочен точно към пулсара. 
Максималната “лъчева скорост” на пулсара вече няма да бъде 
𝑣0, а ще бъде 𝑣0 cos 𝛽 (вж. схемата).  
 

Атанас наблюдава пулсара около деня на лятното слънцестоене, когато ректасцензията на 
Слънцето е 6h. Така пулсарът, имащ ректасцензия 18h, ще се явява в “противостояние” спрямо 
Земята и затова в момента на наблюдение никаква част от орбиталната скорост на Земята не е 
насочена към него (няма лъчева компонента) – оказва се, че Атанас е измерил истинския 
период на пулсара 𝑇0

′. Периодът, който той ще измерва занапред, се мени между 

𝑇min
′ = 𝑇0

′ (1 −
𝑣0 cos 𝛽

𝑐
) = 0,077695 s 

и 

𝑇max
′ = 𝑇0

′ (1 +
𝑣0 cos 𝛽

𝑐
) = 0,077705 s 

От момента на наблюдение до деня на есенното равноденствие измерваният период ще става 
все по-голям, докато накрая стане 𝑇max

′ . От есенното до пролетното равноденствие този период 
намалява от 𝑇max

′  до 𝑇min
′ , след което той отново започва да расте и така нататък. ∎ 

 
Също както периодите на пулсарите в задачата, периодите на електромагнитните вълни също се 
променят. Когато източник има някаква лъчева скорост 𝑣 спрямо наблюдател, наблюдателят 



отчита стойност на периода на вълните 𝑇, различна от истинската 𝑇0. Връзката между тези 

величини е 𝑇 = 𝑇0 (1 +
𝑣

𝑐
); извеждането й е аналогично на това за пулсарите в 18.1., затова и 

връзката е същата.  
 
Периодът 𝑇 на електромагнитна вълна е свързан с честотата й 𝜈 чрез 𝜈 = 1/𝑇. Затова се оказва, 
че промяна се наблюдава не само в периода на вълните, а и в честотата им. Формулата за това е 

𝜈0 = 𝜈 (1 +
𝑣

𝑐
), където 𝜈 е измерената от наблюдателя честота на вълната, а 𝜈0 е истинската 

(лабораторна) честота. Явлението на промяна на честотата вследствие на някаква скорост се 
нарича ефект на Доплер.  

Преобразуваме зависимостта 𝜈0 = 𝜈 (1 +
𝑣

𝑐
) до 
𝜈0 − 𝜈

𝜈
=

𝑣

𝑐
 

Предвид връзката 𝑐 = 𝜆𝜈, този израз може да се запише като 
𝜆 − 𝜆0

𝜆0
=

𝑣

𝑐
 

Лявата страна на последните две равенства се нарича червено отместване, ако е положителна, 
и синьо отместване, ако е отрицателна, и обичайно се означава с 𝑧. Стойността на 𝑧 за някакъв 
обект може да се измери по линиите в неговия спектър, чиято дължина ще се различава от 
лабораторната. 
 

Връзката 𝑧 =
𝑣

𝑐
 е само приблизителна – при извеждането й не отчетохме ефектите от 

специалната теория на относителността. Когато не работим с 𝑣 ≪ 𝑐, тези ефекти не могат да се 
пренебрегнат и формулата е невярна. Тогава се ползва релативистката формула за ефект на 
Доплер: 

𝑧 = √
1 +

𝑣
𝑐

1 −
𝑣
𝑐

− 1 

 
Задача 2. Звезди по еклиптиката.  

• Докажете, че звездите, които лежат на еклиптиката, би трябвало да променят своите 
болометрични звездни величини с период, точно равен на една година.  

• Намерете амплитудата на това изменение. Възможно ли е то да бъде забелязано с 
помощта на съществуващата днес наблюдателна апаратура? (НАО2014-IV-β) 
 

Решение: 
Поради движението на Земята около Слънцето, лъчевите скорости на звездите по еклиптиката, 
гледано от Земята, ще се променят с период точно една година и с амплитуда 𝑣 ≈ 30 km/s, 
където 𝑣 е орбиталната скорост на Земята. Така във връзка с движението на Земята звездите по 

еклиптиката ще имат максимално червено отместване 𝑧max =
𝑣

𝑐
= 0,0001. 

За фотон от звезда по еклиптиката с истинска честота 𝜈0 и наблюдавана честота 𝜈 записваме: 

𝑧 =
𝜈0 − 𝜈

𝜈
=

𝜈0

𝜈
− 1 

Оттук 𝜈 =
𝜈0

𝑧+1
. Но връзката между честотата 𝜈 и енергията 𝐸 на един фотон се дава с 𝐸 = ℎ𝜈, 

където ℎ е константата на Планк. Следва, че поради червеното/синьото отместване 

наблюдаваната енергия на всеки един фотон е 
1

1+𝑧
 пъти енергията, която бихме регистрирали, 

ако бяхме неподвижни спрямо източника му. 
 
Болометричната осветеност, която един източник създава, е равна на сумарната енергия за 
единица време от всички приети фотони от източника. При наличието на червено/синьо 



отместване сумарният брой фотони се запазва, но енергията на всеки от тях нараства 
1

1+𝑧
 пъти. 

Следователно, толкова нараства и сумарната осветеност от източника. Промяната в звездната 
величина, произтичаща от този ефект, може да намерим с формулата на Погсън. Нека 
болометричната осветеност без червено/синьо отместване е 𝐸0, а заедно с него е 𝐸. 
Съответстващите болометрични звездни величини бележим с 𝑚0 и 𝑚. Изменението е 

𝛥𝑚 = |𝑚 − 𝑚0| = |−2,5 lg (
𝐸

𝐸0
)| = |−2,5 lg (

1

1 + 𝑧
)| = |2,5 lg(1 + 𝑧)| 

Заместваме в това 𝑧 = 𝑧max = 0,001 и получаваме търсената амплитуда 𝛥𝑚 = 0,0001m. Такава 
промяна в болометричната звездна величина е много малка, но все пак може да се засече със 
съвременна техника. За големи 𝑧 изменението 𝛥𝑚 вече не е пренебрежимо и трябва да се има 
предвид. ∎ 
 
закон на Хъбъл 
 
През 20-те години на XX век Едуин Хъбъл забелязва зависимостта, че колкото по-далечна е 
дадена галактика, толкова по-голяма е нейната лъчева скорост. Вселената се разширява и 
колкото по-далече е един обект от нас, толкова по-голяма е неговата лъчева скорост поради 
разширението. 
Тази връзка се изразява със закона на Хъбъл: 

𝑣 = 𝐻𝑟 
Тук 𝑣 e лъчевата скорост на обекта, 𝑟 е разстоянието до него, а с 𝐻 се бележи т. нар. константа 

на Хъбъл, 𝐻 ≈ 70
km

s∙Mpc
. Законът на Хъбъл не се изпълнява при случаи, в които разширението на 

Вселената не влияе – напр. за Млечния път и за най-близките до него галактики, гравитационно 
свързани помежду си (Местната група). Отделно от това, за някои близки обекти “собствените” 
лъчеви скорости (т. нар. пекулярни скорости) са сравними с тези, придадени им от 
разширението на Вселената. Тогава трябва да се отчете, че пекулярните скорости не участват в 
закона на Хъбъл. 

• В спектъра на галактика линия с лабораторна дължина на вълната 486,10 nm съответства 
на дължина на вълната 493,42 nm. Пекулярната скорост на галактиката е −686 km/s. На 
колко мегапарсека се намира тази галактика от нас? 

 
Разширението на Вселената изглежда по един и същ начин, независимо от коя точка го 
наблюдаваме, както показва опростеният пример за галактиките 𝐴 и 𝐵 на диаграмата: 

 
строеж на Вселената 
 
Днес е известно, че барионната материя (протони, неутрони и т.н.) не е единственото, 
изграждащо Вселената. Има и т.нар. тъмна материя, която не отделя електромагнитно лъчение 
и не взаимодейства с него. И все пак, за съществуването й има косвени доказателства. 
Например, наблюдаваните криви на въртене на галактиките (разстояние от галактичния център 
по Ox, скорост на въртене по Oy) силно се различават от теоретично предсказаните такива, 
неотчитащи тъмната материя: 



 

• Използвайки двете криви, определете отношението на масата на барионната материя 
към масата на тъмната материя в дадената галактика. 

 
Задача 3. Спирална галактика. В съзвездието Южен 
кръст (Crux) е открита спирална галактика, съставена 
главно от звезди от спектрален клас A7-A8. На небето 
галактиката може да се види като елипса с размери 
около 40 на 30 дъгови секунди. В спектъра на 
галактиката разширената линия Hα се наблюдава на 

дължини от 7054 Å до 7057 Å, приблизително. 
Останалите линии в спектъра на галактиката са също 
отместени и разширени пропорционално. Оценете 
броя звезди в галактиката. (IAO2015-β) 
Справочни данни: 
Лабораторна дължина на вълната за линията Hα – 

6562,8 Å 
 
Решение: 
Лабораторната дължина на вълната за линията Hα е 

6562,8 Å. В спектъра на галактиката тя не само е 
отместена, а и е разширена. Отместването е следствие 
от разширението на Вселената, а разширението в 
линията произтича от движението на звездите в галактиката около нейния център – лъчевите 
компоненти на скоростите на звездите създават ефект на Доплер, който “разтяга”линията в 
диапазон дължини около обичайното й положение. Червеното отместване за галактиката е 𝑧 =
7055,5−6562,8

6562,8
= 0,075. Лъчевата й скорост тогава е 𝑣 = 𝑧𝑐 = 22500 km/s, при което разстоянието 

до галактиката е 𝑟 =
𝑣

𝐻
≈ 320 Mpc (пекулярните скорости на галактиките са от порядъка на 

102 − 103 km/s, затова в нашия случай пекулярната скорост се пренебрегва). 
 
Галактиката се наблюдава като елипса на небето, въпреки че има форма на диск. Това означава, 
че дискът й лежи под ъгъл спрямо зрителния лъч, поради което той се проектира като елипса за 
наблюдателя. Тази елипса ще има голяма ос с ъглов размер, съответстващ на радиуса на 
галактиката 𝑅, и малка ос с ъглов размер, съответстващ на 𝑅 sin 𝑖, където 𝑖 е наклонът спрямо 
зрителния лъч: 



Означаваме ъгловите размери за голямата и малката полуос на елипсата съответно с 𝛿1 и 𝛿2. 

Тогава 𝑅 =
1

2
𝛿1[rad]𝑟 = 9,6 × 1020 m и 𝑖 = arcsin (

𝛿2

𝛿1
) = 48,6°. Линията е разширена по 1,5 Å от 

всяка страна и спомняйки си вида на крива на въртене на типична галактика, може да приемем, 
че разширението се дължи на звездите по ръба на галактиката. Лъчевата скорост на тези звезди 

е 𝑉𝑅 = (
1,5

7055,5
) 𝑐 ≈ 64 km/s. Това е само част от истинската им скорост, защото дискът на 

галактиката е наклонен спрямо зрителния лъч. Пълната скорост е 𝑉 =
𝑉𝑅

cos 𝑖
≈ 97 km/s. 

Приемайки, че звездите по ръба на галактиката се движат около центъра й по кръгови орбити, 

може да намерим масата на галактиката 𝑀 чрез 𝑉 = √
𝛾𝑀

𝑅
. Така 𝑀 =

𝑉2𝑅

𝛾
= 1,35 × 1041 kg. В тази 

маса дела на тъмната материя взимаме за 80%, а останалата маса взимаме изцяло за звезди от 
спектрален клас A7-A8, намиращи се върху главната последователност. По HR диаграмата 
измерваме, че такива звезди имат абсолютна звездна величина в 𝑉 от порядъка на 𝑀𝑉 = 2,3m. 
Приемаме я за болометрична и сравняваме с болометричната звездна величина на Слънцето 
𝑀bol⊙ = 4,74m, за да намерим отношението на светимостите на звездите в галактиката и на 

Слънцето: 𝑀𝑉 − 𝑀bol⊙ = −2,5 lg (
𝐿𝑠

𝐿⊙
). Така 𝐿𝑠[L⊙] ≈ 9,5. Използваме връзката маса-светимост 

за масите и светимостите на звездите в галактиката, 𝐿𝑠[L⊙] ≈ 𝑀𝑆[M⊙]
3,5

, и достигаме до 𝑀𝑠 ≈

1,9 M⊙. Броят на звездите в галактиката тогава е 𝑁 =
𝑀/5

𝑀𝑠
≈ 7 × 109. Величините в условието на 

задачата са дадени с неголяма точност, съответно отговорът трябва да е подходящо закръглен. 
∎ 
 
През 1998 г. е установено наблюдателно, че разширението на Вселената става с ускорение. 
Преди това откритие се е очаквало разширението да се забавя поради гравитационните сили. За 
да може разширението да се ускорява, трябва да съществува някаква неизвестна форма на 
енергия, която да причинява това. Тя е наречена тъмна енергия. Основната теория твърди, че тя 
равномерно изпълва пространството, т.е. за нея плътността на енергията [J/m3] навсякъде и по 
всяко време е еднаква. Стойността на тази плътност на енергията се нарича космологична 
константа и обикновено се бележи с 𝛬. 
 

Ще въведем т.нар. критична плътност 𝜌𝐶 =
3𝐻2

8𝜋𝛾
. Тя представлява плътността, която Вселената 

трябва да има, така че разширението й в определен момент да спре (в тази дефиниция не се 
отчита като фактор тъмната енергия). Ако Вселената има плътност, точно равна на критичната, 
разширението спира в безкрайността, като колкото по-голяма е плътността над критичната, 
толкова по-бързо спира разширението (отново, тук не се взима предвид тъмната енергия).  
 
Тъй като масата и енергията са еквивалентни (вж. напр. масовия дефект в §16.), подобно на 

критичната плътност, може да се дефинира критична плътност на енергията 𝜌𝐶𝐸 =
3𝐻2𝑐2

8𝜋𝛾
. 

Връзката между формулите за 𝜌𝐶  и 𝜌𝐶𝐸 идва от формулата 𝐸 = 𝑚𝑐2. 
 



В космологията, науката за Вселената в най-голям мащаб, често се използва като величина 
параметърът на плътността. За плътност на енергията 𝜌𝐸 параметърът на плътността се 

дефинира като 𝛺 =
𝜌𝐸

𝜌𝐶𝐸
. Според измервания, параметърът на плътността е: 

- около 0,73 за тъмната енергия във Вселената (т.е. 
8𝜋𝛾𝛬

3𝐻2𝑐2 ≈ 0,73); 

- около 0,27 за енергията от масата във Вселената (барионна и тъмна материя); 
- пренебрежимо малък за енергията от лъчение като фотони и неутрино. 

Оказва се, че сумарният параметър на плътността за Вселената е точно 1 или около 1, а в 
Общата теория на относителността при 𝛺 = 1 Вселената е плоска, т.е. в нея е валидна 
Евклидовата геометрия и в най-големи мащаби.  
 
хронология на Вселената 
 
По отношение на развитието на Вселената в днешно време е общоприета теорията на Големия 
взрив, според която Вселената достига днешното си състояние, разширявайки се от изначално 
състояние на безкрайно високи температура и плътност.  
 
Плоската Вселена се обяснява теоретично от период на инфлация в първите мигове след 
Големия взрив – от 10−33 до 10−32 s след Големия взрив Вселената се разширява 
експоненциално и увеличава размера си около 1026 пъти. От инфлацията до 47000 yr (след 
Големия взрив) Вселената е лъчисто-доминирана; параметърът на плътността за лъчението е 
по-голям от този за материята и тъмната енергия, поради което динамиката на Вселената се 
определя именно от лъчението. От 47000 yr до 9,8 × 109 yr Вселената е материално-
доминирана, и от 9,8 × 109 yr до днес тя е вакуум-доминирана, т.е. динамиката й се определя 
от тъмната енергия, тъй като за нея параметърът на плътността е най-голям. 
 
До 103 s вече са образувани първите атомни ядра, но Вселената е твърде гореща, за да може 
ядрата да захванат свободните електрони в пространството и да образуват атоми. Фотоните във 
Вселената, изпълващи пространството тогава, не могат да изминават големи разстояния поради 
сблъсъците им с електроните – светлината не се разпространява свободно. Чак 3,78 × 105 yr 
след Големия взрив Вселената се охлажда достатъчно за формирането на атоми. Тогава 
фотоните в пространството вече могат да пътуват свободно и Вселената става прозрачна. Този 
момент се нарича рекомбинация.  
 
Фотоните от момента на рекомбинация и днес изпълват пространството и се наблюдават 
навсякъде по небето като космически микровълнов фон (също нар. реликтово излъчване). 
Космическият микровълнов фон има 𝑧 ≈ 1100 и е най-старото наблюдаемо електромагнитно 
излъчване. Той има спектър на АЧТ и температура от около 2,725 K. 
 
мащабен фактор 
 
При описването на разширението на Вселената се използва безразмерната величина мащабен 
фактор 𝑎(𝑡) (записът 𝑎(𝑡) е еквивалентен на “мащабен фактор 𝑎 като функция на времето след 
Големия взрив 𝑡”). Прието е, че 𝑎(𝑡0) = 1, където 𝑡0 = 1,38 × 1010 yr е сегашната възраст на 
Вселената. Мащабният фактор съотнася разстоянията между два участващи в космологичното 
разширение обекта в моменти 𝑡 и 𝑡0 с 𝑟(𝑡) = 𝑎(𝑡)𝑟(𝑡0). Тази формула може да се доведе до 

зависимостта 
𝛥𝑟(𝑡)

𝛥𝑡
= (

𝛥𝑎(𝑡)

𝛥𝑡
∙

1

𝑎(𝑡)
) 𝑟(𝑡), която всъщност е законът на Хъбъл, като 𝐻 =

𝛥𝑎(𝑡)

𝛥𝑡
∙

1

𝑎(𝑡)
. 

 
С изведеното дотук се доказва, че при линейно разширение на Вселената (𝑎 ∝ 𝑡) се получава 

равенството 𝐻 =
1

𝑡
.  

• Получете константата на Хъбъл в размерност не на [
km

s∙Mpc
] , а на [yr−1]. 



Замествайки в 𝑡 =
1

𝐻
 съвременна стойност на константата на Хъбъл, получаваме Хъбловата 

възраст на Вселената 𝑡𝐻 ≈ 1,40 × 1010 yr. Тъй като разширението на Вселената реално не е 
линейно, в 𝑡𝐻 има известно отклонение от 𝑡0. Промяната в мащабния фактор с времето реално 
се задава с: 

- 𝑎 ∝ 𝑡1/2 за лъчисто-доминирана Вселена; 

- 𝑎 ∝ 𝑡2/3 за материално-доминирана Вселена; 
- 𝑎 ∝ 𝑒𝐻0𝑡 за вакуум-доминирана Вселена (𝐻0 е константата на Хъбъл в днешно време). 

 
Известно е, че ако получаваме светлина от обект с червено отместване 𝑧, участващ в 
космологичното разширение, то тази светлина е излъчена в момент, в който мащабният фактор 

е 𝑎(𝑡) =
1

1+𝑧
. В този смисъл червеното отместване може да се използва и като индикатор за 

време. Например, събитие, станало “в епоха 𝑧 = 7”, се е случило преди толкова време, отпреди 
колкото е светлината от обекти с 𝑧 = 7. 
 
Задача 4. Звезди в далечна галактика. По спектрални наблюдения на галактика с червено 
отместване 𝑧 = 6,03 е определено, че възрастта на звездите в нея е от 560 до 600 милиона 
години. Какви 𝑧 е обхващала епохата на звездообразуване в тази галактика? Приемете 
възрастта на Вселената за 𝑡0 = 13,8 × 109 yr и работете в космологичен модел, за който 
вселената е плоска и космологичната константа е 𝛬 = 0. В такъв модел за мащабния фактор 𝑎 е 

изпълнено 𝑎 ∝ 𝑡2/3, където 𝑡 е времето след Големия взрив. (IOAA2011) 
 
Решение:  

В космологичния модел е изпълнено 
1

1+𝑧
=

𝑎(𝑡)

𝑎(𝑡0)
= (

𝑡(𝑧)

𝑡0
)

2/3

, където 𝑡(𝑧) е времето след Големия 

взрив, съответстващо на дадено 𝑧. За 𝑧 = 6,03 намираме 𝑡(𝑧) = 7,40 × 108 yr – толкова години 
след Големия взрив е излъчена светлината, която виждаме от галактиката. Изваждаме от 𝑡(𝑧) 
5,60 × 108 yr и 6,00 × 108 yr. Така намираме, че звездообразуването в галактиката става от 𝑡1 =
1,40 × 108 yr до 𝑡2 = 1,80 × 108 yr след Големия взрив. Този период от време съответства на 
интервала от 𝑧1 = 20,3 до 𝑧2 = 17,0. ∎ 
 

ЗАДАЧИ 
 
Задача 5. Тъмна материя – от неутрино? Приемете масата на неутриното за 𝑚𝜈 = 10−5𝑚𝑒, 
където 𝑚𝑒 = 9,11 × 10−31 kg е масата на електрона. Оценете средната концентрация на 
неутрино в пространството, достатъчна, за да обясни участие на тъмната материя 𝛺𝐷𝑀 = 25% в 
маса-енергията на Вселената. Считайте Вселената за плоска. (IOAA2009) 
 
Задача 6. Плътности. Средната температура на космическия микровълнов фон (CMB) в момента 
е 𝑇 = 2,73 K. Произходът на CMB съответства на епоха 𝑧𝐶𝑀𝐵 = 1100. Сегашните плътности на 
тъмната енергия, тъмната материя и барионната материя във Вселената са съответно 𝜌𝐷𝐸 =
7,1 × 10−30 g/cm3, 𝜌𝐷𝑀 = 2,4 × 10−30 g/cm3 и 𝜌𝑁𝑀 = 0,5 × 10−30 g/cm3. Какво е било 
отношението на плътностите на тъмната материя и на 
тъмната енергия в момента на излъчването на CMB? 
(IOAA2008) 
 
Задача 7. Два спектъра. С удебелена линия е даден 
наблюдаваният спектър на даден квазар, а с 
пунктирана – спектърът, който той щеше да има, ако 
се намираше на малко разстояние от Млечния път. За 
двата спектъра мащабът по абсцисата е еднакъв. 
Оценете разстоянието до квазара. (СПбАО2014-II-11) 



Задача 8. Космологичен климат. Движението на Земята заедно с нашата галактика спрямо 
реликтовия фон създава така наречената диполна анизотропия на реликтовото излъчване. 
Поради влиянието на ефекта на Доплер температурата на излъчването по посока на апекса е 
малко по-висока, отколкото в противоположна посока. Разликата в температурите по посока на 
апекса и антиапекса е 𝛥𝑇 = 1,08 × 10−2 𝐾. Имайки предвид това, определете скоростта на 
Земята спрямо реликтовия фон. Средната температура на реликтовото излъчване считайте за 
𝑇 = 2,73 K. (НАО2005-IV-β) 
 
Задача 9. CMB. Ако е известна температурата на космическия микровълнов фон в момента, 𝑇 =
2,725 K, оценете оригиналната му температура (в момента на излъчване). Рекомбинацията 
става 𝑡𝑅 = 3,78 × 105 yr след Големия взрив. От рекомбинацията до 𝑡𝑉 = 9,8 × 109 yr след 
Големия взрив Вселената е материално-доминирана, след което става вакуум-доминирана 
(вземете прехода за мигновен).  
 
Задача 10. Галактика. Болометричната звездна величина на галактика на разстояние 𝐿1 =
3 Mpc е 𝑚1 = 6m, 88. Намерете болометричната звездна величина 𝑚2 на същата галактика, ако 
тя се намираше на разстояние 𝐿2 = 3 Gpc. (IAO2007-β) 
 
Задача 11. Ранна Вселена. Според космологичните модели плътността на лъчистата енергия 𝜌r 
във Вселената е пропорционална на (1 + 𝑧)𝑎, а плътността на енергията на материята 𝜌m е 
пропорционална на (1 + 𝑧)𝑏, където 𝑧 е червеното отместване, съответстващо на епохата, за 
която се отнасят тези плътности. В настоящата епоха параметрите на плътността за лъчението и 
веществото са съответно 𝛺r0

= 10−4 и 𝛺m0
= 0,3. 

• Намерете естествените числа 𝑎 и 𝑏. 

• Изчислете червеното отместване 𝑧𝑒, при което плътностите на енергията на лъчението и 
на материята стават равни. На 𝑧𝑒 ще съответства преходът от лъчисто-доминирана епоха 
към материално-доминирана епоха. 

 
Задача 12. Квазар. Квазарите са тип активни галактични ядра с 
много висока светимост. Те съдържат свръхмасивна черна 
дупка в центъра си, която се подхранва от горещ акреционен 
диск – източник на непрекъснат спектър. Обградени са от 
област, изпълнена с разреден газ, въртящ се с висока скорост и 
с типични размери от порядъка на няколко десетки светлинни 
дни. В тази област се формират водородните емисионни линии 
в спектъра на квазара, силно разширени от въртенето. 
Примерен модел е представен на схемата.  



Даден е спектърът на квазара Маркарян 335, който има червено отместване 𝑧 =  0,0258.  
По абсцисата е дадена дължината на вълната в ангстрьоми, а по ординатата – интензивност на 
излъчването в относителни мерни единици. Представени са и две криви на блясъка на същия 
квазар, получени при паралелни наблюдения в два тесноивични филтъра. Единият филтър е 
центриран върху участък от непрекъснатия спектър (на 5100 Å, където няма спектрални линии), 
а другият – върху емисионната линия 𝐻𝛽. По абсцисата са дадени денонощия, а по ординатата – 

интензивност на излъчването в относителни мерни единици. Оценете по порядък масата на 
свръхмасивната черна дупка в центъра на квазара. Приемете, че размерът на акреционния диск 
е значително по-малък от областта на формиране на емисионните линии (газовата обвивка). 
(НАО2015-IV-β) 

Упътване: Тъй като е трудно да се измери ширината на емисионните линии в тяхната 
основа, заради сливането им с други спектрални линии, приемете, че характерното 
разширение на емисионните линии поради въртенето на газовата обвивка е 4 пъти 
пълната ширина на ниво половината максимум. 
 
Задача 13. Оценка на масата на Сатурн*. Откакто пръстенът на Сатурн е открит от Галилео 
Галилей с неговия телескоп, той се превръща в една от главните астрономически 
забележителности. Това, че пръстенът не е твърдо тяло, а безчислено множество “малки луни”, 
обикалящи около Сатурн по кеплерови орбити, е доказано чрез спектрални наблюдения от 
Джеймс Е. Кийлър и публикувано в първия брой на Astrophysical Journal през 1895 г. В тази 
задача вие трябва да повторите разсъжденията на Кийлър, като използвате неотдавнашни 
наблюдения, а също и да оцените масата на Сатурн. Сатурн е наблюдаван с Nordic Optical 
Telescope (NOT, 2,5-метров телескоп на един от Канарските острови – Ла Палма) на 25.02.2002 в 
23:25 UT. Процепът на спектрографа по отношение на Сатурн е бил разположен така, както е 
показано по-долу. Полученият спектър представлява слънчев спектър, отразен от планетата. 
Вертикалните прави линии в спектъра са телурични, т.е. са линии на поглъщане, възникващи 
при преминаването на светлината през атмосферата на Земята. Наклонените линии са 
абсорбционни линии на Слънцето, отразени от планетата. Двете най-силни абсорбционни 
линии, които се виждат в спектъра, съответсват на преходите 𝐷2 и 𝐷1 на Na I (неутрален 
натрий); техните дължини на вълните в отправна система на покой са съответно 589,00 nm и 
589,59 nm.  

• Даденият спектър нагледно показва, че пръстенът на Сатурн не може да е едно цяло 
въртящо се тяло. Нарисувайте как би изглеждал спектърът, ако пръстенът наистина се 
въртеше като едно цяло твърдо тяло. 

• Известно е, че сидеричният период на въртене на Сатурн около оста му е равен на 10,66 

часа. Използвайте дадения спектър и оценете екваториалния диаметър на Сатурн. 



• По спектъра оценете масата на Сатурн. 

Можете да използвате факта, че пръстенът на Сатурн е плосък и успореден на екватора на 
планетата. (IAO2003-β) 
 
На фигурите са показани положението на процепа на 
спектрографа и спектърът на Слънцето, отразен от 
Сатурн (дължината на вълната расте от ляво надясно). 
 
 
 



19. ТЕРМОДИНАМИКА 
 
относителна атомна и молекулна маса 
 
Атомите на различните химични елементи имат различни маси. За характеризиране на 
отделните маси се използва безразмерната величина относителна атомна маса Ar. За изотоп на 
определен химичен елемент тя представлява масата на изотопа, разделена на атомната 
единица за маса 𝑢 = 1,66 × 10−27 kg. Стойността на Ar за даден изотоп обикновено е близка 
до общия брой протони и неутрони в ядрото му. 

H1
1 → Ar ≈ 1;    He2

4 → Ar ≈ 4;    C6
12 → Ar = 12;    N7

14 → Ar ≈ 14;    O8
16 → Ar ≈ 16. 

Записът Xy
z  означава “изотоп на химичен елемент X с y протона в ядрото и z протона и неутрона 

в ядрото”. За C6
12  относителната атомна маса е точно 12, т.к. атомната единица за маса по 

определение е именно 1/12 от масата на един атом C6
12 . 

 
Аналогично на величината относителна атомна маса, за молекулите се дефинира относителна 
молекулна маса Mr. 

• Каква е относителната молекулна маса на глюкозата (C6H12O6)? 
 
Някои химични елементи (водород, азот, кислород, флуор, хлор, бром, йод) при стайна 
температура се срещат под формата на двуатомни молекули. Когато температурата е 
достатъчно висока (напр. в звездите), връзката между атомите в молекулата е разкъсана и в 
състава на газа на химичния елемент влизат атоми, а не молекули. 
 
Отделно от това, при много високи температури газовете са йонизирани, тоест електроните са 
“избити” от атомите и се движат в пространството отделно от атомните ядра. Частично 
йонизирани газове се наблюдават например при светкавиците, напълно йонизирани газове 
(всички електрони са свободни) се наблюдават например в недрата на звездите. 
 
мол 
 
Науката термодинамика често си служи с мерната единица мол (mol), мярка за количество 
вещество (т.е. брой частици). По дефиниция един мол като число е броят атоми C6

12 , общото 
тегло на които е 12 g. Броят частици на мол е 𝑁𝐴 = 6,022 × 1023 mol−1 . Той се нарича число на 
Авогадро. Един мол въглероден диоксид, примерно, се състои от 6,022 × 1023 молекули CO2. 
Един мол атомен/молекулярен водород се състои от 6,022 × 1023 атома H / молекули H2 и така 
нататък. 
 
Масата, която има един мол от определено вещество, се нарича моларна маса 𝜇 на това 
вещество. За пример, моларната маса на C6

12  е 12 g/mol. Моларната маса на вещество в 
грамове на мол е равна на относителната му атомна/молекулна маса. 
 
идеален газ 
 
Идеалният газ е хипотетичен газ, състоящ се от точкови частици, невзаимодействащи си 
помежду си, освен чрез идеално еластични удари. С увеличаване на температурата или 
намаляване на налягането газовете все по-точно могат да се приемат за идеални.  
 
Нека 𝑛 мола идеален газ имат налягане 𝑃, обхващат обем 𝑉 и имат температура 𝑇. Тогава се 
изпълнява уравнението на Клапейрон-Менделеев: 

𝑃𝑉 = 𝑛𝑅𝑇 
 



Тук 𝑅 = 8,314
J

mol∙K
 е т.нар. универсална газова константа. Да означим за идеален газ общата 

маса с 𝑀, моларната маса с 𝜇 и плътността с 𝜌. Възможно е уравнението на състоянието на 

идеалния газ да се презапише като 𝑃
𝑀

𝜌
=

𝑀

𝜇
𝑅𝑇. Тогава 

𝑃 =
𝜌

𝜇
𝑅𝑇 

Нека в същия газ общият брой частици е 𝑁. Тогава е вярно 𝑃𝑉 =
𝑁

𝑁𝐴
𝑅𝑇, тоест 𝑃 =

𝑁

𝑉
∙

𝑅

𝑁𝐴
𝑇. Броят 

частици на единица обем от газа, или 
𝑁

𝑉
, се нарича концентрация (ще я бележим с 𝑛𝑉). 

Достигаме до друга форма на уравнението на Клапейрон-Менделеев: 
𝑃 = 𝑛𝑉𝑘𝑇 

В това равенство 𝑘 =
𝑅

𝑁𝐴
= 1,38 × 10−22 J/K е константата на Болцман.  

 
първи принцип на термодинамиката 
 
Всяка термодинамична система (напр. количество газ) притежава конкретна вътрешна енергия 
𝑈, която се определя от енергията на топлинно движение на молекулите, потенциалната 
енергия на междумолекулно взаимодействие, ядрената енергия и така нататък. Една система 
може да промени вътрешната си енергия по два начина – или с топлообмен, или с извършване 
на механична работа. При топлообмен газът отдава топлина за сметка на вътрешната си енергия 
или приема топлина, което увеличава вътрешната му енергия. Механичната работа, например, 
може да представлява избутване на бутало от разширяващ се газ за сметка на вътрешната 
енергия на газа.  
 
Нека термодинамична система получава количество топлина 𝑄. Част от тази топлинна енергия 
се превръща в механична работа на системата 𝐴, а останалата част води до изменение 𝛥𝑈 на 
вътрешната й енергия. 

𝑄 = 𝛥𝑈 + 𝐴 
Тази връзка представлява първият принцип на термодинамиката. В равенството 𝑄 може да 
приема и отрицателни стойности – тогава става дума не за получена от системата топлина, а за 
отдадена.  
 
Ако термодинамичната система има постоянно налягане 𝑃, извършената от нея работа 𝐴 се 
изразява с 𝐴 = 𝑃𝛥𝑉, където 𝛥𝑉 е изменението в обема, който системата заема. Отрицателна 
работа съответства на намаляване на обема. 
 
термодинамични процеси 
 
Термодинамичен процес представлява преминаването на термодинамична система от едно 
равновесно състояние към друго. Процес, при който не се променя: 

- налягането, се нарича изобарен; 
- обемът, се нарича изохорен; 
- температурата, се нарича изотермен. 

Процес, при който от системата не влиза и излиза количество топлина, тоест 𝛥𝑄 = 0, се нарича 
адиабатен. Съвкупност от процеси, след извършването на които системата се връща в 
началното си състояние, се нарича кръгов процес или цикъл. 

• С 𝑛 mol идеален газ се извършва цикъл, съставен от два 
изохорни и два изобарни процеса (вж. диаграмата). 
Определете работата на газа за цикъла, ако точките 2 и 4 
върху диаграмата лежат на една изотерма (крива на 
еднакви температури). Температурата на газа в състояние 
1 е 𝑇1, а в състояние 3 температурата е 𝑇3. 



топлинно движение 
 
Молекулите в газ извършват хаотични движения поради температурата си – постъпателно 
движение (т.е. “в пространството”), въртеливо движение и трептене. Извежда се, че за отделна 
молекула от идеален газ средната кинетична енергия на постъпателно топлинно движение се 

задава с 𝜀̅ =
3

2
𝑘𝑇, където 𝑇 е температурата на газа. Ако масата на молекулата е 𝑚, тази енергия 

от друга страна е равна на 
𝑚𝑣2̅̅̅̅

2
. В последния израз 𝑣2̅̅ ̅ е средната стойност на квадрата на 

скоростта на молекулата. Оказва се, че средната квадратична скорост на молекулите в газ с 
температура 𝑇 и маса на молекулите 𝑚 е 

𝑣rms = √
3𝑘𝑇

𝑚
= √

3𝑅𝑇

𝑁𝐴𝑚
= √

3𝑅𝑇

𝜇
 

(средното квадратично 𝑥rms на числа 𝑥1, 𝑥2...𝑥𝑛 се дефинира посредством 𝑥rms = √𝑥1
2+𝑥2

2+⋯+𝑥𝑛
2

𝑛
) 

В израза 𝜇 е моларната маса на разглеждания от нас идеален газ. 

• Оценете ширината на линията Hα в спектъра на Слънцето. Периодът на околоосно 
въртене на Слънцето за екватора е 25,05 дни. 

 
Задача 1. Алкохол във Вселената. Астрономи от британската обсерватория Джодрел Банк са 
забелязали в далечния космос облак от алкохол с размер 288 милиарда мили (463 милиарда 
километра), откритие, което може да хвърли светлина върху процесите на образуване на 
гигантски звезди. Някои държави дори решили да изпратят експедиции в тази област на 
Вселената за дегустация на облака, но... ентусиазмът им пресъхнал, тъй като станало ясно, че 
със съвременната технология до облака трябва да се лети много милиони години. 
Концентрацията на молекулите в облака е голяма в сравнение с тази за междузвездния газ, но е 
много малка в сравнение с ежедневните ни представи, само около 10 атома/mm3. Оценете 
температурата, която облакът трябва да има, така че да остане стабилен и да не се разсее 
(докато пристигне международната експедиция). Предполагаме, че алкохолът е етилов 
(C2H5OH). (IAO2007-β) 
 
Решение: 
Относителната молекулна маса на етиловия спирт е Mr = 2 × 12 + 6 × 1 + 1 × 16 = 46, така че 
моларната маса за облака е 𝜇 = 46 g/mol ⇔ 0,046 kg/mol. Средната квадратична скорост на 

молекулите ще бъде 𝑣rms = √
3𝑅𝑇

𝜇
, където 𝑇 е температурата на алкохолния облак и 𝑅 е 

универсалната газова константа. За да не се разпръсне облакът, трябва тази скорост да не 

надвишава втората космическа скорост за периферията на облака 𝑣2 = √
2𝛾𝑀

𝑟
 (𝑀 е масата на 

облака, а 𝑟 =
1

2
× 463 × 109 km е неговият радиус).  

√
3𝑅𝑇

𝜇
< √

2𝛾𝑀

𝑟
 

Означаваме с 𝜌 плътността на облака и намираме условието за температурата му. 
3𝑅𝑇

𝜇
<

2𝛾

𝑟
×

4

3
𝜋𝑟3𝜌 

𝑇 <
8𝛾𝜋𝑟2𝜌𝜇

9𝑅
 

По условие концентрацията за облака е 10 атома/mm3, което за етилов алкохол (деветатомна 

молекула) е еквивалентно на 
10

9
 молекули/mm3, или 

10

9
× 109 молекули/m3. Означавайки 



концентрацията с 𝑛𝑉 и масата на една молекула от облака с 𝑚, записваме 𝜌 = 𝑛𝑉𝑚 =
𝑛𝑉𝜇

𝑁𝐴
. С 

това условието за температурата става 

𝑇 <
8𝛾𝜋𝑟2𝑛𝑉𝜇2

9𝑅𝑁𝐴
 

Заместваме числени стойности и получаваме 𝑇 < 4,7 K. Сравняването на скоростта на топлинно 
движение с втората космическа скорост дава само приблизителен резултат, така че за отговор е 
по-точно да оставим закръгленото 𝑇 < 5 K. ∎ 
 

ЗАДАЧИ 
 
Задача 2. Марсианска височина. В решенията на задачи по астрономия често може да се 
срещне така наречената височина на еднородната атмосфера за Земята, която е равна на около 
8 километра. Тази величина показва каква би била височината на атмосферата, ако навсякъде 
имаше една и съща плътност, равна на плътността на въздуха на повърхността, а налягането на 
повърхността останеше същото. Оценете височината на еднородната атмосфера за Марс, ако 
температурата на повърхността му е 𝑇0 ≈ −30° C, а в атмосферата на Марс няма почти нищо, 
освен въглероден диоксид. Приемете търсената височина за много по-малка от радиуса на 
Марс. (РАО2016-V) 
 
Задача 3. Брой молекули. Оценете броя молекули в земната атмосфера. (IAO2009-αβ) 
Упътване: Приемете частиците в земната атмосфера за 78% азот и 22% кислород. 
 
Задача 4. Температура на звездно ядро. Може да смятаме, че слънчевото ядро се състои от 
смес от напълно йонизирани водород и хелий, като частта атоми хелий е 𝛼 = 0,08 (т.е. броевете 
атоми водород и хелий се отнасят като 92:8). Температурата в центъра на слънчевото ядро е 
равна на 15 милиона градуса, а плътността е 150 g/cm3. Да предположим, че съществува 
въглеродна звезда (100% напълно йонизиран въглерод) със същите параметри като Слънцето 
(същите плътност и налягане в центъра, същата маса). Намерете температурата в центъра на 
ядрото на въглеродната звезда. Газът в ядрата на звездите може да се приеме за идеален. 
(IAO2008-β) 
 
Задача 5. Акреция върху неутронна звезда. Неутронна звезда се движи със скорост 100 km/s 
през облак молекулярен водород с температура 10 K и концентрация 103/cm3. Оценете 
скоростта, с която неутронната звезда ще събира маса вследствие на акреция. Сблъсъците 
между частиците от облака да не се отчитат. (РАО2012-IV-11) 
 
Задача 6. Термодинамично изследване. Хипотетичен 
апарат е изстрелян с цел изследване на атмосферите 
(100% CO2) на две екзопланети 𝑃1 и 𝑃2. Атмосферите са в 
статично термодинамично равновесие. Когато апаратът 
достига всяка от планетите, от него се отделя спускаем 
модул към съответната планета, който се спуска 
вертикално (радиално, т.е. по посока на радиуса на 
планетата). Когато модулът достигне постоянна скорост, 
той започва да изпраща на апарата стойностти на 
атмосферното налягане. На фигурата по-долу са нанесени 
стойностите на атмосферното налягане за планета 𝑃1 като 
функция на времето на спускане. Когато спускаемият 
модул докосва повърхността на планетата 𝑃1, той изпраща 
стойността на температурата 𝑇0 = 700 𝐾 и стойността на 
гравитационното ускорение 𝑔0 = 10 m/s2. 



• Намерете височината ℎ0, от която спускаемият модул за 𝑃1 започва равномерното 
спускане и съответно започва да предава информация. 

• Намерете температурата на планетата 𝑃1 за височина над повърхността ℎ = 39,6 km. 

Универсалната газова константа приемете за 𝑅 = 8,3
J

mol∙K
. 

На фигурата по-долу са нанесени стойностите на атмосферното налягане за планета 𝑃2 като 
функция на времето на спускане. Когато спускаемият модул докосва повърхността на планетата 
𝑃1, той изпраща стойността на температурата 𝑇0 = 750 𝐾 и стойността на гравитационното 
ускорение 𝑔0 = 8 m/s2. 

• Постройте графиките на функциите 𝑝(ℎ) и 𝑇(ℎ) в атмосферата на планетата 𝑃2. 
(IOAA2014) 

 



20. ДВОЙНИ ЗВЕЗДИ. ЕКЗОПЛАНЕТИ 
 
механика на двойна система  
 
За разлика от Слънцето, много звезди във Вселената са част от двойни или кратни системи. Тук 
ще разгледаме по-конкретно двойните системи. В най-простия случай двете компоненти на 
системата се движат по концентрични кръгови орбити около общ център на масите (ЦМ).  
 

Нека за този случай означим масите им с 𝑀1 и 𝑀2, а 
съответните орбитални скорости и радиуси на 
орбитите с 𝑣1, 𝑟1 и 𝑣2, 𝑟2. При движението на 
компонентите по орбитите правата през тях винаги 
преминава през центъра на масите (иначе ЦМ 
нямаше реално да е такъв). Това означава, че двете 
звезди имат еднаква ъглова скорост 𝜔 по своите 
орбити и съответно еднакъв период на завъртане по 
орбитата. Всяка от компонентите изпитва 

гравитационна сила 𝐹 =
𝛾𝑀1𝑀2

(𝑟1+𝑟2)2
, породена от 

другата компонента. Тъй като орбитите са кръгови, 
за отделните звезди гравитационната сила може да 
се представи като центростремителна. Така за двете 
компоненти центростремителните сили са равни, 
т.е. 𝑀1𝜔2𝑟1 = 𝑀2𝜔2𝑟2. От това следва 

𝑀1𝑟1 = 𝑀2𝑟2 
Отделно от това, поради равенството на ъгловите скорости: 

𝑣1

𝑟1
=

𝑣2

𝑟2
 

Съответно е вярно и: 
𝑀1𝑣1 = 𝑀2𝑣2 

Видно е, че по-масивната звезда се намира на по-близката до ЦМ орбита и има по-малка 
орбитална скорост от другата звезда. 
 
В общия случай двете компоненти в система се движат по елиптични орбити с общ фокус, който 
се явява и център на масите на системата. Отново, правата през звездите винаги преминава 
през ЦМ. Остава вярна зависимостта 𝑀1𝑟1 = 𝑀2𝑟2, където 𝑟1 и 𝑟2 този път са разстоянията от 
компонентите до центъра на масите в произволен момент. 

При двойните звезди важат и законите на Кеплер. Нека в двойна система разгледаме едната 
компонента като неподвижна и проследим движението на другата компонента около нея. Това 
относително движение представлява елипса с фокус в неподвижната компонента. Параметрите 
на тази елипса (т.нар. относителна орбита) зависят от параметрите на двете орбити около ЦМ. 
Ако орбитите около ЦМ са окръжности, относителната орбита също е окръжност. 



• Покажете, че голямата полуос на относителната орбита е равна на 𝑎1 + 𝑎2, където 𝑎1 и 
𝑎2 са големите полуоси на орбитите на отделните компоненти около центъра на масите. 

 
Да си представим, че във фокуса на 
относителната орбита стои хипотетична звезда 
с маса, равна на сбора на масите на двете 
компоненти 𝑀1 + 𝑀2, и че по самата орбита 
обикаля тяло с пренебрежимо малка маса. 
Оказва се, че при тези условия малкото тяло 
обикаля около централната звезда с период, 
равен на периода на двойната система 𝑇. При 
това скоростта на тялото в даден момент от 
движението по относителната орбита е равна 
на скоростта на едната компонента относно 
другата в двойната система за въпросния 
момент (вж. схемата). Затова при двойните 
системи относителната орбита се явява 
еквивалентно преобразование. За тялото по 
относителна орбита може да запишем третия 
закон на Кеплер така: 
 

(𝑎1 + 𝑎2)3

𝑇2
=

𝛾(𝑀1 + 𝑀2)

4𝜋2
 

Поради еквивалентността той ще изглежда по този начин и за реалната двойна система.  
Казаното дотук е изпълнено не само за двойни звезди, а за каква да е система от две тела – 
звезда/планета, планета/спътник и така нататък. 
 
Задача 1. Пулсар в двойна система. На разстояние 1000 парсека от нас се наблюдава двойна 
система, състояща се от пулсар и звезда с маса 4 слънчеви маси, която е от главната 
последователност върху диаграмата на Херцшпрунг-Ръсел. Максималното видимо ъглово 
отстояние между двете компоненти е 0,04′′, а минималното – 0,01′′. Приема се, че апсидната 
линия (голямата ос) на орбитите е перпендикулярна на зрителния лъч. Орбиталният период на 
системата е 52,82 години.  

• Определете масата на пулсара.  

• Пулсарът очевидно е остатък от избухването на по-масивната звезда в системата като 
свръхнова. Оценете колко вещество е било изхвърлено при тази експлозия, ако се 
предполага, че непосредствено преди нея двете компоненти са се движили по кръгови 
орбити около центъра на масите. (НАО2013-III-11/12) 

 
Решение: 
а) Минималното и максималното ъглово отстояние съответстват на перицентралното и 
апоцентралното разстояние (𝑟𝑝 и 𝑟𝑎) по относителната орбита. Имаме  

𝑟𝑝 = 0,01
𝜋

180 × 60 × 60
 rad ×  1000

180 × 60 × 60

𝜋
 AU = 10 AU  

 

𝑟𝑎 = 0,04
𝜋

180 × 60 × 60
 rad ×  1000

180 × 60 × 60

𝜋
 AU = 40 AU 

Голямата полуос на относителната орбита тогава е 𝑎 =
𝑟𝑝+𝑟𝑎

2
= 25 AU. Означаваме с 𝑀𝑠 и 𝑀𝑝 

масите съответно на звездата и на пулсара, а с 𝑇 – техния орбитален период. Записваме за 

относителната орбита третия закон на Кеплер 
𝑎3[AU]

𝑇2[yr]
= 𝑀𝑠 + 𝑀𝑝 [M⊙]. За масата на пулсара 

получаваме 𝑀𝑝 =
𝑎3

𝑇2 − 𝑀𝑠 ≈ 1,6 M⊙. 



б) Означаваме масата на звездата, преди да избухне като свръхнова, с 𝑀0. По условие преди 
експлозията относителната орбита е кръгова. Във фокуса на тази относителна орбита стои 
хипотетична звезда с маса 𝑀0 + 𝑀𝑠, а по орбитата обикаля тяло с пренебрежимо малка маса. 
Тогава компонентата с маса 𝑀0 избухва като свръхнова, при което масата й се редуцира до 𝑀𝑝. 

Това означава, че в относителната орбита централната звезда внезапно намаля масата си на 
𝑀𝑝 + 𝑀𝑠 и поради това орбитиращото тяло тръгва на по-голяма елиптична орбита с 

перицентрално разстояние, равно на досегашния радиус на кръговата относителна орбита (вж. 
схемата). 

Скоростта 𝑣 може да се изрази и като √
𝛾(𝑀0+𝑀𝑠)

𝑟𝑝
, тъй като е скоростта по кръговата орбита, но 

може да се представи и като √
𝛾(𝑀𝑝+𝑀𝑠)

𝑎
∙

𝑟𝑎

𝑟𝑝
, тъй като е перицентралната скорост по елиптичната 

орбита. Приравняваме двете: 

√
𝛾(𝑀0 + 𝑀𝑠)

𝑟𝑝
= √

𝛾(𝑀𝑝 + 𝑀𝑠)

𝑎
∙

𝑟𝑎

𝑟𝑝
= √

2𝛾(𝑀𝑝 + 𝑀𝑠)

𝑟𝑎 + 𝑟𝑝
∙

𝑟𝑎

𝑟𝑝
= √

2𝛾(𝑀𝑝 + 𝑀𝑠)

4𝑟𝑝 + 𝑟𝑝
∙

4𝑟𝑝

𝑟𝑝
 

√
𝛾(𝑀0 + 𝑀𝑠)

𝑟𝑝
= √

8𝛾(𝑀𝑝 + 𝑀𝑠)

5𝑟𝑝
 

𝑀0 + 𝑀𝑠 =
8

5
(𝑀𝑝 + 𝑀𝑠) 

𝑀0 =
8

5
𝑀𝑝 +

3

5
𝑀𝑠  

Веществото, изхвърлено при експлозията, е 𝛥𝑀 = 𝑀0 − 𝑀𝑝 =
3

5
(𝑀𝑝 + 𝑀𝑠) ≈ 3,4 M⊙. ∎ 

 
наблюдения на двойни звезди 
 
Двойните звезди могат да се разпознаят по няколко основни 
начина. Системите, чиито компоненти се различават с 
непосредствено наблюдение (напр. с телескоп), се наричат 
визуално двойни. Не бива те да се бъркат с оптично 
двойните звезди, които са близо една до друга на небето, 
но не са свързани гравитационно. При наблюдения на 
визуално двойни звезди са важни два параметъра – ъгловото отстояние между компонентите 
на небето и позиционният ъгъл за системата. Нека по небесната сфера свържем по-ярката 
компонента 𝐴 на визуално двойна с по-слабата компонента 𝐵 и със северния небесен полюс 𝑃, 
използвайки дъги от големи кръгове. Позиционният ъгъл представлява ъгълът между дъгите 𝐴𝑃 
и 𝐴𝐵, отчетен обратно на часовниковата стрелка от началото 𝐴𝑃. 



Често компонентите на двойните системи са твърде близо една до друга, за да е възможно 
разделянето им от какъвто и да е наблюдателен уред. Тогава за изследването им се използват 
други способи. Ако орбиталната равнина на звездите е разположена в пространството по 
подходящ начин, от Земята могат да се отчетат периодични промени в блясъка на системата, 
дължащи се на преминаването на компонентите една пред друга; самите преминавания не се 
различават с наблюдателен уред, но породените от тях флуктуации в блясъка се регистрират. 
Системи от звезди, при които гореописаното се случва, се наричат затъмнително двойни. 
Техните криви на блясъка се характеризират с главен минимум и вторичен минимум (вж. крива 
за идеализиран случай с кръгови орбити). 

Главният минимум се наблюдава при закриването на компонентата с по-голяма повърхностна 
яркост, т.е. с по-голяма светимост за единица площ, т.е. с по-голяма температура. Обратно, 
вторичен минимум има при закриването на по-студената звезда. Минимумите по кривата на 
блясъка се характеризират със спад, плосък участък и покачване. При спада дискът на по-
малката компонента постепенно навлиза в този на по-голямата. Плоският участък съответства 
на преминаването на по-малкия диск през по-големия. При покачването по-малкият диск спира 
да е пред/зад по-големия и затъмнението свършва. 
 
В показаната по-горе ситуация затъмнението е централно – пътят на едната звезда минава през 
диаметъра на другата. Когато орбиталната равнина е наклонена спрямо зрителния лъч, това не 
е така. Ако наклонът стане твърде голям, за наблюдателя дисковете на компонентите въобще 
не се докосват и затъмнение няма. 
 
Задача 2. Двойна звезда. Двойната система 42 Com се състои от две еднакви звезди от главната 
последователност на диаграмата на Херцшпрунг-Ръсел, всяка със звездна величина 5,22m и 
спектрален клас F5. Паралаксът на 42 Com е 0,057″. Наклонът на орбиталната плоскост на двете 

звезди към зрителния лъч е близък до 0, макар и не достатъчно, че да може системата да се 
наблюдава като затъмнително двойна звезда. Относителната орбита на едната звезда около 
другата е елипса с ексцентрицитет 0,37. Голямата й полуос е насочена към Земята. 

• Земният астроном Делян Лафчиев си разменя данни за тази система със своите любезни 
виолетови колеги от планетата Х, намираща се на същото разстояние от  42 Com, както 
Земята, но в перпендиклярна посока. От тях той знае, че голямата полуос на 
относителната орбитата е с видим ъглов размер 0,66″ и че те я наблюдават като 
затъмнително двойна звезда с централни затъмнения. Нарисувайте схематично как би 
изглеждала кривата на изменение на блясъка, получена от тази далечна планета. 

• Намерете минималния ъгъл, под който орбиталната плоскост може да бъде наклонена 
към зрителния лъч за земния наблюдател, така че да не се наблюдават затъмнения в 
двойната система. 



• Колко би продължавало за нас затъмнението на едната звезда от другата при 

положение, че наклонът на орбиталната плоскост към зрителния лъч е 0? Орбиталният 
период на системата е 26 години. (НАО2010-IV-β) 

Справочни данни: 
Радиус на звезда от спектрален клас F5 и клас светимост I – 100 R⊙ 
Радиус на звезда от спектрален клас F5 и клас светимост V – 1,3 R⊙ 
 
Решение: 
а) Периодът и ексцентрицитетът за относителната орбита са същите, 
както за реалните орбити. Времето за затъмнение може да се 
намери, като разгледаме как едната звезда обикаля около другата по 
относителната орбита (тук не заместваме звездите по относителната 
орбита с пребрежимо леко тяло и звезда с маса, равна на общата 
маса на двойната система). Щом голямата ос на относителната 
орбита е насочена към нас, то тя ще бъде перпендикулярна на 
зрителния лъч за наблюдателя от планетата X. 
 
Избираме за определеност посоката на движение по относителната 
орбита (вж. чертежа). Звездите са еднакви, така че видът на кривата 
няма да зависи от посоката на движение. При избраната от нас посока е явно, че от затъмнение 
на 𝐵 от 𝐴 до затъмнение на 𝐴 от 𝐵 минава много по-малко време, отколкото от затъмнение на 𝐴 
от 𝐵 до затъмнение на 𝐵 от 𝐴. Това се обяснява от втория закон на Кеплер. Така в кривата на 
блясъка, търсена от нас, минимумите ще са близки един до друг два по два. Тези минимуми ще 
имат еднаква амплитуда и няма да имат плосък участък, тъй като звездите са еднакви – веднага 
след спада в даден минимум започва покачване. Строго погледнато, обаче, графиките на 
самите минимуми няма да са еднакви. При затъмнението на 𝐴 от 𝐵 спадът става малко по-
бавно от покачването, тъй като в течение на затъмнението компонентата 𝐴 се доближава до 
перицентъра и съответно увеличава орбиталната си скорост. Аналогично, при затъмнението на 
𝐵 от 𝐴 спадът става малко по-бързо от покачването. И така, от планетата X кривата на блясъка 
изглежда по следния начин: 

б) Двете компоненти по условие са на главната последователност, т.е. са от клас светимост V. 
Радиусите им са 𝑅 = 1,3 R⊙, тоест 𝑅 = 905000 km. Разстоянието 𝑟 до системата намираме чрез 

𝑟[pc] =
1

𝜋[′′]
. Така получаваме 𝑟 = 17,54 pc. Означаваме ъгловия размер на голямата полуос на 

относителната орбита с 𝛿 и намираме съответстващия линеен размер 𝑎 = 𝛿[rad]𝑟 = 11,58 AU. 
Перицентралното разстояние по относителната орбита намираме, знаейки ексцентрицитета на 
орбитата 𝑒 = 0,37. Получаваме 𝑟𝑝 = 𝑎(1 − 𝑒) = 7,30 AU. Да си представим, че наклонът на 

орбиталната равнина на 42 Com спрямо зрителния лъч от Земята е нулев, и да започнем 
постепенно да го увеличаваме. При наклон нула затъмнения за Земята има тогава, когато 
звездите са в перицентъра и апоцентъра на орбитите си. С увеличаването му първо ще спрат да 
се наблюдават затъмнения в апоцентър, а след това и в перицентър. Така търсеният минимален 
наклон 𝑖 се намира със следния чертеж: 



От него е видно, че sin 𝑖 =
2𝑅

𝑟𝑝
. Имаме 𝑖 = arcsin

2𝑅

𝑟𝑝
≈ 5′40′′. 

в) При наклон на орбиталната равнина 0 затъмненията са централни. Както споменахме, 
работим с относителна орбита. Едната звезда е фиксирана във фокуса на орбитата, а другата 
звезда обикаля по орбитата. Продължителността на всеки минимум ще зависи от това дали той 
настъпва когато орбитиращата компонента е в перицентъра или когато орбитиращата 
компонента е в апоцентъра.  

От чертежите заключаваме, че за всяко от затъмненията компонентата 𝐴 трябва да измине 
отсечка от относителната орбита, приблизително равна на 4𝑅 (тъй като 4𝑅 ≪ 𝑎, кривината на 
орбитата може да се пренебрегне). При едното затъмнение тази отсечка се изминава с 
перицентралната скорост 𝑣𝑝 по относителната орбита, а при другото отсечката се изминава с 

апоцентралната скорост 𝑣𝑎. Продължителностите на затъмненията са 𝑡1 =
4𝑅

𝑣𝑝
 и 𝑡2 =

4𝑅

𝑣𝑎
. Ако 

масата на всяка от компонентите е 𝑀, то по третия закон на Кеплер 
𝑎3 [AU]

𝑇2 [yr]
= 2𝑀 [M⊙]. По 

относителната орбита скоростите 𝑣𝑝 и 𝑣𝑎 се намират, приемайки, че във фокуса на орбитата 

стои звезда с маса 2𝑀: 

𝑣𝑝 = √
𝛾(2𝑀)

𝑎
∙

1 + 𝑒

1 − 𝑒
                       𝑣𝑎 = √

𝛾(2𝑀)

𝑎
∙

1 − 𝑒

1 + 𝑒
  

Като числени стойности имаме 𝑀 = 1,15 M⊙ ⇔ 2,30 × 1030 kg, 𝑣𝑝 = 19,61 km/s и 𝑣𝑎 =

9,02 km/s. С тях получаваме 𝑡1 = 51,3 h и 𝑡2 = 111,5 h. ∎ 
 
Да предположим сега, че наблюдаваме затъмнително двойна звезда, при която затъмненията 
са такива, че дискът на едната компонента да може изцяло да покрива другия диск за 
наблюдателя. Означаваме за такава система температурите и радиусите на компонентите с 𝑇1, 
𝑅1, 𝑇2 и 𝑅2, за определеност 𝑅1 > 𝑅2. Осветеността, получена от системата извън минимум, се 
определя от площите на дисковете и от температурите на отделните звезди на четвърта степен, 
тоест 𝐸 ∝ 𝜋𝑅1

2𝑇1
4 + 𝜋𝑅2

2𝑇2
4. Ако системата е в минимум, за който компонентата с по-голям 

радиус закрива тази с по-малък радиус, осветеността се определя само от по-голямата 



компонента, т.е. 𝐸 ∝ 𝜋𝑅1
2𝑇1

4. В другия минимум малката звезда преминава пред голямата. 
Осветеността зависи от видимата площ на диска на звездата с радиус 𝑅1, цялата площ на диска  
на звездата с радиус 𝑅2 и температурите на двете компоненти – 𝐸 ∝ (𝜋𝑅1

2 − 𝜋𝑅2
2)𝑇1

4 + 𝜋𝑅2𝑇2
4. 

• В затъмнително двойна звезда едната компонента има радиус 3,2 R⊙ и температура 

8800 K, а другата компонента има радиус 5,6 R⊙ и температура 5500 K. Пресметнете в 
болометрични звездни величини с колко се изменя блясъкът при главен минимум и при 
вторичен минимум в сравнение с максималния блясък. Считайте, че затъмненията са 
централни. 

Криви на блясъка, подобни по вид на разгледаните дотук, на практика се срещат рядко. Тук 
прилагаме криви за някои реални типове затъмнително двойни променливи.  
 
Променливите от тип Алгол обикновено имат 
периоди от около няколко дни и амлитуди от 
около една звездна величина. Компонентите 
са ярка звезда от главната последователност и 
по-слаба, по-голяма и по-маломасивна звезда 
извън ГП. Поради акреция в системата част от 
масата на по-голямата звезда е преминала в 
по-малката. 
 
Променливите от тип β Lyr са обичайно с 
периоди от един или няколко дни и 
амплитуди под една звездна величина в 
повечето случаи. Компонентите са големи и 
масивни звезди (гиганти или свръхгиганти), 
намиращи се много близо една до друга. 
Вследствие на това между отделните звезди 
има значителен обмен на маса. Те имат 
елипсоидални форми и са обгърнати в обща 
атмосфера. Поради това кривата на блясъка е 
по-плавна, отколкото при звездите от тип Алгол.  
 
Променливите от тип W UMa типично имат 
периоди от 0,25 d до 1 d и амплитуди, вариращи 
между няколко десети от звездната величина и 
малко над една звездна величина. Както при 
тип β Lyr, звездите от тип W UMa са много близо 
една до друга, при което обменят маса и 
споделят атмосфера. Разликата е, че тип W UMa 
са около главната последователност (обичайно 
класове F, G и K). Минимумите в кривата на 
блясъка в повечето случаи са еднакви, тъй като 
компонентите имат едни и същи температури.  
 
 



Освен с телескоп и по затъмнения, двойни звезди могат да се разпознаят също и по спектрални 
наблюдения. С движението си по своите орбити компонентите в двойна система периодично 
променят лъчевите си скорости спрямо Земята. Затова поради ефекта на Доплер линиите в 
спектъра на двойна система се преместват ту към червения, ту към синия му край. Ако 
двойнствеността на система се проявява в това, става дума за спектрално двойна звезда. По 
продължителни наблюдения на такава система може да се направи крива на лъчевите 
скорости. Нейният вид ще зависи от параметрите на системата, а също и от ориентацията на 
зрителния лъч спрямо орбитата. В частния случай, когато кривата е синусоида, орбитите в 
системата са кръгови. 

• Дадена е кривата на лъчевите скорости 
на двойна система. Системата има 
период 62 d. Намерете лъчевата 
скорост на системата като цяло в 
пространството и оценете минималната 
възможна маса на по-масивната 
компонента. 
Упътване: Работете с 
относителната орбита на 
системата. Не е дадена информация 
за наклона на орбиталната равнина 
спрямо зрителния лъч. 

В спектъра на двойна система е възможно да 
се регистрират спектралните линии или само 
на по-ярката компонента, или и на двете. 
 
Задача 3. Визуално и спектрално двойна. Авторитетният астроном Стефан Иванов посвещава 
60-годишната си професионална кариера в изследване на двойна звезда, съставена от 
компоненти, чиито видими звездни величини са 3m и 8m. Чрез прецизни и системни 
наблюдения той определя, че видимото ъглово отстояние между тях се изменя от 1′′ до 5′′ с 
период 50 години. Лъчевата скорост на слабата компонента спрямо Слънцето се изменя с 
амплитуда ±5 km/s, а на ярката - с амплитуда ±1 km/s.  

• Считайки двете орбити за кръгови, намерете масите и светимостите на двете звезди.  

• Какво би трябвало да е компетентното мнение на знаменития астроном за техните 
физически характеристики? (НАО2015-IV-β) 
 

Решение: 
а) Орбитите на звездите са кръгови, но поради 
наклона на равнината им спрямо зрителния лъч, 
за наблюдател на Земята те се проектират като 
елипси. Проекцията на относителната орбита на 
небето има малка полуос 1’’ и голяма полуос 5’’. 
Това означава, че ако наклонът на двете орбити и 
съответно на относителната орбита е 𝑖, то sin 𝑖 =
1/5 (за пояснение, вж. аналогията с решението на 
18.3.). Затова 𝑖 = 11,54°. Бележим амплитудите на лъчевите скорости с 𝑣1 и 𝑣2, като 𝑣1 < 𝑣2. 

Сега може да намерим орбиталните скорости на двете компоненти, 𝑢1 =
𝑣1

cos 𝑖 
= 1,02 km/s и 

𝑢2 =
𝑣2

cos 𝑖
= 5,10 km/s (отново, за пояснение вж. 18.3.). Пълната скорост по относителната 

орбита в такъв случай е 𝑢 = 𝑢1 + 𝑢2 = 6,12 km/s. По условие периодът, с който се мени 
видимото отстояние между звездите, е 50 години. Следва, че орбиталният период на системата 
е 𝑇 = 100 yr, защото в рамките на един орбитален период имаме две максимални 
сближавания и раздалечавания. Имаме достатъчно данни, за да получим радиуса на 



относителната орбита 𝑎 =
𝑢𝑇

2𝜋
= 20,55 AU. Чрез третия закон на Кеплер намираме сбора от 

масите на компонентите: 
𝑎3[AU]

𝑇2[yr]
= 𝑀1 + 𝑀2 [M⊙]. Така 𝑀1 + 𝑀2 = 0,87 M⊙. За кръгови орбити е 

изпълнено 𝑀1𝑢1 = 𝑀2𝑢2. Тогава 𝑀1𝑣1 = 𝑀2𝑣2 и 
𝑀1

𝑀2
=

𝑣2

𝑣1
= 5. Съответно 𝑀1 = 5𝑀2 и 6𝑀2 =

0,87 M⊙. Масите на компонентите са 𝑀1 = 0,72 M⊙ и 𝑀2 = 0,15 M⊙. Ако орбиталната равнина 
лежеше перпендикулярно на зрителния лъч, ъгловото отстояние между компонентите винаги 
щеше да е равно на 5’’. Тези 𝛿 = 5′′ съответстват на радиуса на относителната орбита 𝑎. По това 

намираме разстоянието до двойната звезда 𝑟 =
𝑎

𝛿[rad]
= 4,11 pc. С него и с видимите звездни 

величини на компонентите 𝑚1 = 3m и 𝑚2 = 8m достигаме до абсолютните звездни величини 
𝑀1 = 𝑚1 − 5 lg 𝑟[pc] + 5 = 4,93m 
𝑀2 = 𝑚2 − 5 lg 𝑟[pc] + 5 = 9,93m 

Абсолютната звездна величина на Слънцето в 𝑉 е 𝑀𝑉 = 4,83m. Няма данни за болометричните 
поправки, така че за всички звезди в задачата ще ги вземем за нула (което ще внесе грешка в 
крайния отговор). При тези условия намираме светимостите 𝐿1 и 𝐿2 на компонентите в 
слънчеви светимости чрез 

𝑀1,2 − 𝑀𝑉 = −2,5 lg (
𝐿1,2

𝐿⊙
)  

Резултатът е 𝐿1 ≈ 0,9 L⊙ и 𝐿2 ≈ 9 × 10−3 L⊙. 
б) При такива светимости и маси единствен вариант е двете звезди да са на главната 
последователност или близо до нея. По-масивната звезда е малко по-хладна от Слънцето. 
Вероятно тя принадлежи към спектрален клас K. Масата и светимостта на по-слабата 
компонента са типични за червено джудже от спектрален клас M. 
 
наблюдения на екзопланети 
 
Екзопланетите (планети извън Слънчевата система) се откриват по начини, практически 
подобни на тези за откриване на двойни звезди. Механиката на система от звезда и 
екзопланета е същата, както механиката на двойна звезда. Ако около звезда орбитира 
екзопланета, то двете тела ще се движат около общ център на масите. Поради това звездата 
периодично променя лъчевата си скорост и линиите в спектъра й периодично менят 
положението си. Затова спектралните наблюдения могат да служат и за намиране на 
екзопланети. С метода на лъчевите скорости по-лесно се намират масивни планети, близки до 
звездите, тъй като те предизвикват най-големи флуктуации в лъчевата скорост. 
 
Екзопланетите могат да бъдат забелязани и по пасажите си пред дисковете на техните звезди. 
Ако планета с радиус 𝑅pl обикаля около звезда с радиус 𝑅, осветеността от системата извън 

пасаж е 𝐸 ∝ 𝜋𝑅2 при предположение, че отразената от планетата звездна светлина е 

пренебрежимо малко. При пасаж осветеността е 𝐸 ∝ 𝜋𝑅2 − 𝜋𝑅pl
2 . В кривите на блясъка за 

екзопланетите има по един минимум за един орбитален период, като формата му наподобява 
вида на минимумите при двойни звезди – спад от I контакт (допир на двата диска) до II контакт, 
плосък участък от II контакт до III контакт, покачване от III контакт до IV контакт (вж. схемата): 



Това колко близо до центъра на звездния диск преминава хордата на пасажа се определя от 
наклона на планетната орбита спрямо зрителния лъч. 
 
С метода на транзитите (пасажите) се откриват най-лесно планетите с голям размер. Този метод 
и методът на лъчевите скорости съответстват на 95% от намерените досега екзопланети. 
Повечето от първите открити екзопланети са газови гиганти с малки орбитални радиуси, т.нар. 
горещи Юпитери. В днешно време нерядко се засичат планети с размери малко над земните, 
т.нар. суперземи, а дори и планети, по-малки от Земята. Особен интерес представляват 
екзопланетите в обитаемата зона на звездите – зоната, получаваща осветеност, близка до 
осветеността на Земята от Слънцето. 
 
свръхнови тип Ia 
 
Не всички свръхнови (вж. §16.) са свързани с колапс на ядрото на масивна звезда. Така 
наречените свръхнови от тип Ia се получават в двойни системи, едната компонента на които е 
бяло джудже. Когато другата компонента се превърне в гигант като част от еволюцията си, тя 
може да се окаже достатъчно близо до бялото джудже, така че то да започне да засмуква газ от 
нея. Така бялото джудже постепенно увеличава масата си. Ако при този процес масата му 
надвиши 1,44 M⊙ (границата на Чандрасекар), бялото джудже се взривява като свръхнова от 
тип Ia. Такива свръхнови рядко могат да се получат и от сблъсък на две бели джуджета, при 
който се превишава масата на Чандрасекар. Свръхновите от тип Ia се различават от останалите 
типове свръхнови (Ib, Ic, II…) по характерните си криви на блясъка. В повечето случаи пикът в 
кривите им съответства на абсолютна звездна величина 𝑀𝑉 = −19,3m във филтър 𝑉. Тази 
стойност е универсална, защото условията на образуване на свръхнови тип Ia са много подобни 
в отделните двойни системи. Еднаквият максимален блясък прави свръхновите тип Ia добри 
стандартни свещи.  
 
 



ЗАДАЧИ 

 
Задача 4. Спектрално двоин̆а звезда. Звездата HD 80715 от съзвездието Рис е двойна система, 
намираща се на разстояние 80 светлинни години от нас. Двете звезди са много сходни една с 
друга. Те са от спектрален клас К и имат приблизително еднакви маси.  

• На фигурата са представени измененията с времето на една абсорбционна линия в 
спектъра на звездата. Вижда се, че през определени интервали от време линията се 
раздвоява на две компоненти, а после те отново се събират в една. Обяснете това 
явление.  

• Направете необходимите измервания и пресмятания и постройте кривите на изменние 
на лъчевите скорости на двете звезди с времето.  

• Определете орбиталния период на звездите в двойната система.  

• Пресметнете разстоянието между двете звезди при предположение, че зрителният лъч 
от земния наблюдател лежи в орбиталната равнина на звездите. 

• Намерете масите на звездите в единици слънчеви маси. (НАО2010-III-11/12) 

 
Задача 5. Екзопланетата COROT 7b. COROT 7b e eдна от първите открити екзопланети, които 
имат размери, съпоставими с тези на Земята. Намира се в съзвездието Еднорог, на разстояние 
500 ly от Земята. Планетата обикаля по кръгова орбита около звездата COROT-7, която 
принадлежи на Главната последователност и има спектрален клас G9V (температура 5250К). 
Видимата звездна величина на звездата е 11,67m. Радиусът й е 0,82 R⊙, а масата й е 0,9 M⊙. 
 
Планетата COROT 7b е открита с космическия телескоп 
COROT, изстрелян съвместно от френската космическа 
агенция (CNES) и Европейската космическа агенция (ESA). 
На фиг. 1 е дадена кривата на блясъка на звездата по 
време на пасаж на планетата пред диска на звездата. 
Можем да считаме, че зрителният лъч лежи точно в 
орбиталната равнина на планетата. По ординатната ос е 
нанесен относителен светлинен поток, а не звездна 
величина. Той се приема за равен на 1,0000 извън 
времето на пасажа на планетата.  



С помощта на спектрографа HARPS, монтиран на 3,6-метровия телескоп в 
Южноевропейската обсерватория в Чили, е получено изменението на лъчевата 
скорост на звездата COROT-7. В таблицата, подготвена от астронома Никола 
Каравасилев, са дадени съответните стойности за различни моменти от време, 
като е направена корекция за движението на Земята около Слънцето. 
Промяната на лъчевата скорост на звездата се дължи на гравитационното 
въздействие на планетата COROT-7b.  

• Постройте кривата на лъчевата скорост на звездата COROT-7. 
Определете скоростта, с която тя се движи около общия център на 
масите с планетата.  

• Определете отношението на радиусите на планетата и звездата, след 
което намерете радиуса на COROT-7b.  

• Пресметнете масата на планетата, а след това и нейната плътност. Към 
кой клас планети бихме могли да считаме, че тя прнадлежи?  

• Коментирайте точността на получените от вас резултати и факторите, 
които влияят върху нея. (НАО2016-III-9/10) 

 
Задача 6. Планета около двойна звезда. През 2011 година по наблюдения на космическия 
телескоп “Кеплер” е открита затъмнително двойна звезда, състояща се от червено джудже 
(𝑀1 = 0,51 M⊙, 𝑅1 = 0,540 R⊙, 𝑇1 = 3450 K) и бяло джудже (𝑀1 = 0,592 M⊙, 𝑅2 =

0,01345 R⊙, 𝑇1 = 7100 K). Периодът на системата е 𝑝 = 1,37865 d. Представете си, че около 
двете звезди обикаля планета с радиус, 1,5 пъти по-голям от радиуса на Земята, и се 
наблюдават пасажи на планетата по дисковете на звездите. Периодът на планетата е 
25,505025 d.  

• Пресметнете амплитудата на възможните взаимни пасажи и затъмнения в тази система. 
Не забравяйте, че фотометричната точност на телескопа “Кеплер” е 0m,0001 (една 
десетохилядна от звездната величина). Нарисувайте схеми на разположението на трите 
тела при взаимните явления.  

• При пасаж на бялото джудже по диска на червеното джудже е установено, че 
амплитудата на блясъка е забележимо по-малка от тази, която се получава от 
пресмятанията. Отнякъде се взема допълнително светлина, която намалява амплитудата 
на минимума. Това явление е получило обяснение, когато астрономите си спомнили за 
голямата плътност на белите джуджета. Опитайте се и вие да дадете обяснение откъде 
се взема допълнителната светлина. (НАО2015-III-9/10) 

 
Задача 7. Екзопланета. Наскоро астрономите откриха екзопланета, която практически не 
отразява светлина и принадлежи на класа на горещите Юпитери. Масата й съответства на 12 
юпитериански маси, средният й орбитален радиус е 0,036 AU, а орбиталният период е 2,47 d. 
Посочените тук величини за екзопланетата са получени с помощта на данни от космическия 
телескоп “Кеплер”, който постоянно следи областта от небето между съзвездията Лебед и Лира. 
Телескопът е изстрелян през март 2009 г. и може да засича не само газови гиганти, а и планети с 
размера на Земята. Наскоро учените откриха, че екзопланетите могат да предизвикват големи 
приливни вълни върху звездите, които оказват значително влияние върху спектралните 
параметри на излъчената от звездата светлина. Всъщност, с помощта на този ефект учените са 
доказали, че планетата се движи около звездата по кръгова орбита. На графиката е даден 
потокът светлина в зависимост от фазата, като за единица е взет потокът светлина извън пасаж. 

• На графиката отбележете точките, съответстващи на първи, втори, трети и четвърти 
контакт. Запишете стойността на фазата за всеки от контактите. 

• Определете продължителността на пасажа (времето, за което планетният диск напълно 
преминава пред диска на звездата). 

• Определете инклинацията (наклона) на орбитата. Равнината, спрямо която се отчита този 
наклон, е перпендикулярна на зрителния лъч. 



• Намерете радиуса на звездата. 

• Намерете радиуса на планетата. (IAO2011-αβ) 

 
Задача 8. Двойна неутронна звезда. Пулсарът PSR B1913+16 е открит през 1974 г. с 
радиотелескопа Аресибо. Той е компонента в тясна двойна система с период 7,75 часа. 
Предполага се, че другата компонента е също неутронна звезда и че масите на двете 
компоненти са приблизително равни. Оценете стойността на тези маси, като използвате 
данните от кривата на лъчевата скорост на пулсара. На графиката е дадена лъчевата скорост на 
пулсара относно центъра на масите на системата. Орбиталната равнина на двойната система е 
наклонена на 43° спрямо зрителния лъч от нас към нея. (НАО2016-III-11/12) 

 
Задача 9. Бягство от звезден куп. Масивните рентгенови двойни звезди са тесни двойни 
системи с масивна звездна компонента и компактен обект (неутронна звезда или черна дупка). 
Поради приливните сили материя от масивната звезда изтича през точката L1 в акреционен 
диск около компактния обект. При падането си тази материя се нагрява до стотици милиони 
градуси и излъчва в рентгеновия диапазон. 
Двойната звезда Миро (от Сопот) 2106+34 е съставена от равни по маса звезда от спектрален 
клас O9V и черна дупка. Компонентите на собственото движение на двойната система са 
(𝜇𝛼 cos 𝛿 , 𝜇𝛿)  =  (−5,7 , −3,1) mas/yr, а разстоянието до нея е 3200 pc. Орбиталният период на 

системата е 5,578 d, a линията HeI (6678 Å) в спектъра на звездата от клас О периодично мени 

положението си с 4,21 Å. Ексцентрицитетът на орбитата е пренебрежимо малък. Смята се, че 
системата се е родила в разсеян куп и несиметричното избухване на главната компонента като 



свръхнова й е придало импулс, вследствие на който тя е излетяла от купа. Този импулс може да 

бъде не по-голям от 1000 
M⊙∙km

s
 (𝑀⊙ = 2,0 × 1030 kg). Кандидати за произхода на системата са 

куповете Федя 26 и Емо 182. При връщане на пространствените скорости на обектите назад във 
времето, рентгеновата двойна звезда е съвпадала по положение с всеки от двата купа. 
Разстоянията от нас до двата купа се оценяват на ~3 kpc. Собствените им движения са 
(𝜇𝛼 cos 𝛿 , 𝜇𝛿)  =  (−4,7 , −1,4) mas/yr за Федя 26 и (𝜇𝛼 cos 𝛿 , 𝜇𝛿) =  (−6,2 , −2,7) mas/yr за 
Емо 182. Ъгловите разстояния от Федя 26 и Емо 182 до Миро 2106+34 са съответно 3,6° и 6,5°. 
Може ли рентгеновата двойна система Миро 2106+34 да се е образувала в някой от двата купа 
и ако да – в кой? Или може в кой да е от двата? Обосновете се. (НАО2015-IV-β) 
 
Задача 10. Двоен радиопулсар*. Радиопулсарът представлява бързо въртяща се неутронна 
звезда, излъчваща снопове радиовълни от магнитните си полюси. Тези снопове се наблюдават 
на Земята като поредица пулсации, разделени от наблюдаем период на пулсациите 𝑃𝑡. Когато 
пулсарът е част от двойна система, този период се различава от истинския период на 
пулсациите (𝑃0) за пулсара. Пулсарът 0514–40 е наблюдаван с радиотелескопа GMRT в Индия 
през 2004 година. Истинският период на пулсациите за този пулсар е 𝑃0 = 4,990575 ms. 
Таблицата съдържа данни за 𝑃𝑡 като функция на времето в части от орбиталния период, 𝑡/𝑇 
(𝑇 = 18,35 d). Приемете, че наблюдателят се намира в орбиталната равнина на пулсара. 

• Направете графика за данните от таблицата. Оразмерете графиката подходящо. 

• Ако орбитата беше кръгова, формата на графиката нямаше да е същата, както формата на 
графиката, която сега начертахте. Скицирайте формата на графиката за кръгова орбита. 

Предоставена ви е графика на елиптичната орбита на пулсара, имаща ексцентрицитет 𝑒 =
0,866. Стрелката на елипсата показва, че пулсарът се движи обратно на часовниковата стрелка 
по орбитата си около фокуса 𝑂. Линиите 𝐴𝑃 и 𝐵𝐷 са взаимноперпендикулярни; 𝐴𝑃 е голямата 
ос на елипсата. 

• Взимайки 𝑢𝐴 в 𝐴 за единица за скорост, изчислете перпендикулярните на радиус-вектора 
компоненти на скоростите в позиции 𝐵, 𝑃 и 𝐷 (съответно 𝑢𝐵, 𝑢𝑃 и 𝑢𝐷). 

• На предоставената ви графика на орбитата е показана допирателна към елипсата в точка 
𝐵. Използвайки графиката или по друг метод, определете пълната скорост в 𝐵, 𝑃 и 𝐷 
(съответно 𝑣𝐵, 𝑣𝑃 и 𝑣𝐷), отново спрямо 𝑢𝐴. 

• От формата на графиката 𝑃𝑡(𝑡/𝑇) определете дали наблюдателят е разположен близо до 
голямата или до малката ос на орбитата. Определете и от коя страна. 

• Приемете, че компонентата на скоростта, успоредна на голямата ос, е максимална в 
точки 𝐵 и 𝐷. Отбележете точките 𝐴, 𝐵, 𝑃 и 𝐷 на начертаната от вас графика. 

• Грубо скицирайте кривата 𝑃𝑡(𝑡/𝑇), ако наблюдателят се намираше по оста на елипсата, 
перпендикулярна на тази в петата подточка. 

• Чрез графиката на орбитата оценете частта от общия орбитален период, за която се 
изминава дъгата 𝐷𝑃𝐵. Оценете същото от графиката, начертана от вас. 

• Начертайте на направената от вас графика линията 𝑃𝑡 = 𝑃0. Измерете площите под 
начертаната от вас графика от горната и долната страна на тази линия и използвайте 
това, за да дадете оценка за голямата ос на орбитата на радиопулсара в светлинни 
секунди. (IAO2006-β) 

 

𝑡/𝑇 𝑃𝑡 [ms] 𝑡/𝑇 𝑃𝑡 [ms] 𝑡/𝑇 𝑃𝑡 [ms] 

0,136661 4,990905 0,384599 4,990415 0,465116 4,989770 

0,211722 4,991053 0,386994 4,989791 0,503379 4,989925 

0,268267 4,991236 0,406418 4,989308 0,671385 4,990276 

0,343782 4,991742 0,410888 4,989361 0,774999 4,990418 

0,373530 4,992284 0,415199 4,989412 0,986004 4,990680 

0,376936 4,992207 0,452397 4,989698 - - 



Задача 11. Далечна планета*. Около 

звезда с маса, равна на слънчевата, е 

открит тъмен спътник. В някаква 

обсерватория с интервал точно 1 ден са 

направени измервания на видимата 

звездна величина и хелиоцентричната 

лъчева скорост, показани на графиките. 

Считайки, че наблюдателят се намира в 

плоскостта на орбитата на спътника, че 

спътникът и звездата са сферични и не 

отчитайки потъмняването към лимба на 

звездата, намерете: 

• радиуса на звездата; 

• масата на спътника; 

• радиуса на спътника; 

• разстоянието до звездата. 

(РАО2017-IV-10/11) 
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21. ВИСША МАТЕМАТИКА* 
 

производни 
 
Нека разгледаме функция на някаква променлива 𝑦(𝑥). За всяка точка (𝑥, 𝑦) от графиката на 
функцията можем да построим допирателна – права, пресичаща графиката само във въпросната 
точка. Наклонът на допирателната спрямо оста Ox ще характеризира това колко бързо се 
изменя стойността на 𝑦 с изменението на 𝑥 около разглежданата точка. По-голям по модул 

наклон на допирателната 
Δ𝑦

Δ𝑥
= tg 𝜃 съответства на по-бързо изменение, като 𝜃 е ъгълът между 

Ox→ и допирателната (вж чертежа). Казахме “по-голям по модул”, защото като наклонът може 
да приема и отрицателни стойности (когато 𝜃 е тъп). 
 
 За функцията 𝑦(𝑥) в повечето случаи от практиката съществува друга функция, която дава 
стойността на наклона на допирателната в зависимост от 𝑥. Тя се нарича производна на 𝑦(𝑥) и 

се бележи с 
𝑑𝑦

𝑑𝑥
 или 

𝑑

𝑑𝑥
(𝑦). Това означение има смисъл на “много малкото изменение 𝑑𝑦 на 𝑦 

при много малкото изменение 𝑑𝑥 на 𝑥”. 

Производната очевидно показва кога функцията расте (когато 
𝑑𝑦

𝑑𝑥
> 0) и кога функцията 

намалява (когато 
𝑑𝑦

𝑑𝑥
< 0). А ако 

𝑑𝑦

𝑑𝑥
= 0, то функцията тъкмо е спряла да расте и ще започне да 

намалява или е спряла да намалява и ще расте. С други думи, за 𝑥, при което 
𝑑𝑦

𝑑𝑥
= 0, функцията 

има локален минимум или максимум (“локален” ⇔ “за даден интервал”). Точка 𝐴 на графиката 
по-горе е място на локален максимум, въпреки че максимумът на функцията изобщо е +∞.  
 

Прилагаме по-долу производните 
𝑑

𝑑𝑥
(𝑓) на някои функции 𝑓(𝑥). Тук 𝑎 и 𝑛 означават произволни 

ненулеви константи, а 𝑒 е неперовото число (вж. §1.).  
𝑑

𝑑𝑥
(𝑎) = 0                           (т.е. производната на функцията 𝑓(𝑥) = 𝑎 е нула) 

𝑑

𝑑𝑥
(𝑎𝑥𝑛) = 𝑎𝑛𝑥𝑛−1         (т.е. за дадено 𝑥 производната на 𝑓(𝑥) = 𝑎𝑥𝑛 е равна на 𝑎𝑛𝑥𝑛−1) 

𝑑

𝑑𝑥
sin 𝑥 = cos 𝑥   

𝑑

𝑑𝑥
cos 𝑥 = −sin 𝑥                                                   (в тези формули 𝑥 е в радиани) 

𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥 ln 𝑎 (затова 

𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥)         

𝑑

𝑑𝑥
ln 𝑥 =

1

𝑥
 



Прилагаме също и някои правила при диференцирането, т.е. намирането на производни. Тук 
𝑓(𝑥) и 𝑔(𝑥) са функции на 𝑥. 
𝑑

𝑑𝑥
(𝑎𝑓) = 𝑎

𝑑

𝑑𝑥
(𝑓)                    

𝑑

𝑑𝑥
(𝑓 ± 𝑔) =

𝑑

𝑑𝑥
(𝑓) ±

𝑑

𝑑𝑥
(𝑔)                   

𝑑

𝑑𝑥
(𝑓𝑔) = 𝑓

𝑑

𝑑𝑥
(𝑔) + 𝑔

𝑑

𝑑𝑥
(𝑓) 

• Диференцирайте по 𝑥 функциите (3𝑥 + 4)(𝑥3 + 2𝑥 − 9) и 
𝑒𝑥

𝑥3
. 

• Намерете при каква стойност на числото 𝑚 функцията 3𝑚3 + 2𝑚2 − 1 има локален 
минимум.  

• Докажете, че измежду всички правоъгълници с фиксиран периметър най-голямо лице 
има квадратът с такъв периметър. 

 

Производната на функцията от функция ℎ(𝑔(𝑥)) се дава с 
𝑑

𝑑𝑥
(ℎ(𝑔(𝑥))) =

𝑑ℎ(𝑔(𝑥))

𝑑𝑔(𝑥)
∙

𝑑𝑔(𝑥)

𝑑𝑥
. Това 

означава следното – първо диференцираме ℎ(𝑔(𝑥)), полагайки 𝑔(𝑥) като някаква произволна 

променлива 𝑧. След като това е направено, заместваме обратно 𝑧 = 𝑔(𝑥). Полученият резултат 

се умножава по 
𝑑𝑔(𝑥)

𝑑𝑥
. Например, в 

𝑑

𝑑𝑥
(sin(cos 𝑥)) полагаме cos 𝑥 = 𝑧 и 

𝑑

𝑑𝑥
(sin(cos 𝑥)) =

𝑑

𝑑𝑥
sin 𝑧 ∙

𝑑

𝑑𝑥
cos 𝑥 = − cos 𝑧 sin 𝑥 = − cos(cos 𝑥) sin 𝑥. 

• Намерете производната на ln 6𝑥2 и на 𝑒cos(6𝑥−1). 

• Намерете двете неотрицателни числа със сума 9, за които е максимално произведението 
на едното число и квадрата на другото число. 

 

Производната по 𝑥 на дадена производна 
𝑑𝑦

𝑑𝑥
 се записва като 

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑2𝑦

𝑑𝑥2 и се нарича втора 

производна. По аналогия се дефинира трета производна 
𝑑3𝑥

𝑑𝑦3, четвърта производна 
𝑑4𝑥

𝑑𝑦4 и т.н. 

 
Производните намират широко приложение във физиката. Например, изразът за моментна 

скорост е 𝑣 =
𝑑𝑥

𝑑𝑡
, тоест 𝑣 е производната на преместването 𝑥 по времето 𝑡. Изразът за моментно 

ускорение е 𝑎 =
𝑑𝑣

𝑑𝑡
⇔ 𝑣̇ (за производни по времето често се използват означения с точки, като 

𝑏̇ ⇔
𝑑𝑏

𝑑𝑡
, 𝑏̈ ⇔

𝑑2𝑏

𝑑𝑡2  и така нататък). Като цяло е безопасно всяка ползвана дотук в помагалото “Δ” 

да се замени с “𝑑”, тъй като много от величините във физиката се дефинират с производни. 
 
Занапред често ще използваме, че равенствата от математиката и физиката са верни и в 

диференциалната им форма. Щом като е вярно 𝑉 =
4

3
𝜋𝑟3, то ще е изпълнено и 

𝑑𝑉

𝑑𝑟
=

4

3
𝜋(3𝑟2), 

което също може да се запише като 𝑑𝑉 = 4𝜋𝑟2𝑑𝑟 . Последното равенство показва, че ако 
увеличим радиуса на сфера с много малко 𝑑𝑟, обемът на тази сфера ще нарастне с много малък 
обем 𝑑𝑉 = 4𝜋𝑟2𝑑𝑟. 
 
интеграли 
 
Грубо казано, действието интегриране е обратно на диференцирането. Ако имаме функция 
𝑓(𝑥), нейният неопределен интеграл е функция 𝐹(𝑥), за която производната е 𝑓(𝑥). Това се 
записва по следния начин: 

∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) 

Еквивалентно твърдение е  
𝑑𝐹

𝑑𝑥
= 𝑓. За пример, неопределеният интеграл на 𝑥4 е ∫ 𝑥4 𝑑𝑥 =

𝑥5

5
+

𝐶 (производната на 
𝑥5

5
 е именно 𝑥4). В израза 𝐶 е произволно число, наречено интеграционна 

константа. То се поставя, защото 
𝑑

𝑑𝑥
(

𝑥5

5
+ 𝐶) =

𝑑

𝑑𝑥
(

𝑥5

5
). С други думи, знаейки производната на 

функция, можем да определим вида на функцията само с точност до свободен член (константа). 



Прилагаме по-долу неопределените интеграли ∫ 𝑓 𝑑𝑥 на някои функции 𝑓(𝑥). Тук 𝑎 ≠ 0 и 𝑛 ≠
0, −1 са константи, а 𝑒 е неперовото число.  

∫ 𝑎 𝑑𝑥 = 𝑎𝑥 + 𝐶             ∫ 𝑥𝑛 𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶 

∫ sin 𝑥 𝑑𝑥 = − cos 𝑥 + 𝐶         ∫ cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝐶 

∫ 𝑎𝑥 𝑑𝑥 =
𝑎𝑥

ln 𝑎
+ 𝐶 (затова ∫ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝐶)                ∫

1

𝑥
𝑑𝑥 = ln|𝑥| + 𝐶 

Тези равенства са тясно свързани с изразите за производни, които бяха показани по-горе. 
 
Ето някои правила при интегриране (𝑓(𝑥) и 𝑔(𝑥) са функции на 𝑥): 

∫ 𝑎𝑓 𝑑𝑥 = 𝑎 ∫ 𝑓 𝑑𝑥              ∫(𝑓 ± 𝑔) 𝑑𝑥 = ∫ 𝑓 𝑑𝑥 ± ∫ 𝑔 𝑑𝑥 
 
Според правилото за интегриране по части е вярно ∫ 𝑓 𝑑𝑔 = 𝑓𝑔 − ∫ 𝑔 𝑑𝑓.  
 

За да поясним какво означава това, нека намерим чрез правилото ∫ 𝑥√𝑥 + 1 𝑑𝑥.  От това, че 

𝑑 (
2

3
(𝑥 + 1)3/2) = (𝑥 + 1)1/2𝑑𝑥, следва равенството ∫ 𝑥√𝑥 + 1 𝑑𝑥 = ∫ 𝑥𝑑 (

2

3
(𝑥 + 1)3/2). Сега ще 

приложим правилото за интегриране по части, взимайки 𝑓(𝑥) = 𝑥 и 𝑔(𝑥) =
2

3
(𝑥 + 1)3/2. Тогава 

∫ 𝑥𝑑 (
2

3
(𝑥 + 1)3/2) =

2

3
𝑥(𝑥 + 1)3/2 − ∫

2

3
(𝑥 + 1)3/2 𝑑𝑥. Интегралът ∫

2

3
(𝑥 + 1)3/2 𝑑𝑥 е 

еквивалентен на ∫
2

3
(𝑥 + 1)3/2 𝑑(𝑥 + 1), защото 𝑑(𝑥 + 1) = 𝑑𝑥. Сега можем да разглеждаме 𝑥 +

1 като отделна променлива и да прилагаме правилата за интегриране спрямо нея. Затова 

имаме ∫ 𝑥√𝑥 + 1 𝑑𝑥 =
2

3
𝑥(𝑥 + 1)3/2 −

4

15
(𝑥 + 1)5/2 + 𝐶 (не се интересуваме от знака на 

интеграционната константа). 

• Намерете ∫ 3𝑥3(2𝑥2 − 1)𝑑𝑥, ∫ 𝑥 sin 𝑥 𝑑𝑥, ∫ sin 𝑥 cos 𝑥 𝑑𝑥. 
 
Ако имаме функция 𝑓(𝑥), нейният определен интеграл от 𝒂 до 𝒃 е стойността на 𝐹(𝑏) − 𝐹(𝑎), 
където 𝐹(𝑥) е неопределеният интеграл на 𝑓(𝑥). Това се записва така: 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) 

В определените интеграли интеграционната константа се съкращава. За пример, определеният 

интеграл на 𝑥2 − 2 от 1 до 3 е ∫ (𝑥2 − 2)
3

1
𝑑𝑥 = (

33

3
− 2 ∙ 3 + 𝐶) − (

13

3
− 2 ∙ 1 + 𝐶) =

14

3
. 

• Пресметнете също ∫ (𝑥2 − 𝑥 + 1)
3

−3
 и ∫ 𝑒−𝑥−2

−4
. 

 
Разглеждаме графиката на някаква функция, например скорост на тяло в зависимост от времето 

𝑣(𝑡). Пътят, изминат от тялото за време 𝑡𝑎 до време 𝑡𝑏, се задава с 𝑠 = ∫ 𝑣(𝑡)
𝑡𝑏

𝑡𝑎
𝑑𝑡 (защото както 

производната на преместването по времето е скоростта, така и интегралът на скоростта спрямо 
времето е преместването).  
 
Стойността на 𝑠 има смисъл на стойността на 
площта под графиката на 𝑣(𝑡) от 𝑡𝑎 до 𝑡𝑏, 
ограничено до Ox (на схемата). Въпросната 
площ може да се разглежда като сбор на 
безкрайно много безкрайно тънки 
правоъгълници със страни безкрайно малко 
време 𝑑𝑡 и моментна скорост 𝑣(𝑡). Площта на 
всеки правоъгълник за дадено време 𝑡 е 
𝑣(𝑡)𝑑𝑡. Смисълът зад действието интегриране 
е всъщност сумиране на всички тези площи от 
начална стойност (в случая момент 𝑡 = 𝑡𝑎) до 
крайна стойност (момент 𝑡 = 𝑡𝑏).  



Обръщаме внимание, че интегрирането на функция дава положителна стойност за площта под 
графиката, когато графиката е над Ox, и отрицателна стойност за площта под графиката, когато 

графиката е под Ox. На схемата ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑆 − 𝑇 + 𝑈, а не 𝑆 + 𝑇 + 𝑈! 

Показано по-долу е оценяването на площ под графика чрез сумиране на площи на 
правоъгълници. Когато правоъгълниците са безкрайно тънки (при интегриране), определянето 
на площта става абсолютно точно. 
 

Както преди пояснихме, ако имаме някакво равенство, то ще остане вярно и след 
диференциране на двете страни. Аналогично, ако разполагаме с равенство в диференциална 
форма, то ще остане вярно и след подходящо интегриране в двете страни. Повечето задачи по 
физика и астрономия с висша математика са свързани с намирането на подходяща зависимост в 
диференциална форма и нейното интегриране. Как точно става това е показано в решените 
задачи тук. 
 

Задача 1. Нееднороден астероид. Разглеждаме небесно тяло с плътност, 
обратнопропорционална на разстоянието от центъра с коефициент на пропрционалност 𝛼 =
5,0 × 1013 kg/m2. Ако параболичната скорост на повърхността на тялото е 𝑣0 = 1,5 × 104 m/s, 
пресметнете масата му. (IOAA2015) 
 
Решение: 

Плътността на разстояние 𝑟 от центъра на тялото по условие е 𝜌 =
𝛼

𝑟
. Всеки слой от тялото на 

разстояние 𝑟 от центъра и с много малка “ширина” 𝑑𝑟 има много малък обем 𝑑𝑉 = 4𝜋𝑟2𝑑𝑟 и 
съответно много малка маса 𝑑𝑀 = 𝜌𝑑𝑉 = 4𝜋𝛼𝑟𝑑𝑟. Пълната маса 𝑀 на тялото в задачата може 
да се представи като сбор от масите на безкрайно много безкрайно тънки слоеве като 
гореописания. Тоест за да намерим 𝑀, трябва да сумираме масите на слоевете за всички 



възможни разстояния от центъра 𝑟, обхождайки от 𝑟 = 0 до 𝑟 = 𝑅, където 𝑅 е радиусът на 
тялото. Математически това става с интегриране на двете страни на последното уравнение: 

∫ 𝑑𝑀
𝑀

0

= ∫ 4𝜋𝛼𝑟𝑑𝑟
𝑅

0

 

В лявата страна ∫ 𝑑𝑀
𝑀

0
= 𝑀 − 0 = 𝑀. В дясната страна 4𝜋𝛼 е константа и затова е вярно 

∫ 4𝜋𝛼𝑟𝑑𝑟
𝑅

0
= 4𝜋𝛼 ∫ 𝑟𝑑𝑟

𝑅

0
. Имаме ∫ 𝑟𝑑𝑟

𝑅

0
=

𝑅2

2
−

02

2
=

𝑅2

2
, така че 𝑀 = 4𝜋𝛼 ×

𝑅2

2
= 2𝜋𝛼𝑅2. 

Параболичната скорост на повърхността на тялото е 𝑣0 = √
2𝛾𝑀

𝑅
. От това следва 𝑅 =

2𝛾𝑀

𝑣0
2 . 

Заместваме това в 𝑀 = 2𝜋𝛼𝑅2 и получаваме 𝑀 = 2𝜋𝛼 ×
4𝛾2𝑀2

𝑣0
4 . Затова 𝑀 =

𝑣0
4

8𝜋𝛼𝛾2 = 9,1 ×

1021 kg. ∎ 
 

Задача 2. Бягство от облак. Намерете минималната начална скорост, с която трябва тяло да се 
изстреля от центъра на газов облак, така че да го напусне завинаги. Облакът е еднороден и има 
маса 𝑀 и радиус 𝑅. Пренебрегнете сблъсъците на тялото с частиците в облака. (IOAA2009) 
 
Решение: 

За напускането на облак от повърхността му е нужна втора космическа скорост 𝑣2 = √
2𝛾𝑀

𝑅
. При 

изстрелване на тяло от центъра на облака с начална скорост 𝑣0 гравитационните сили 
постепенно ще намаляват тази скорост. За да може облакът да се напусне завинаги, трябва 
когато тялото достига повърхността на облака, началната му скорост 𝑣0 да е редуцирана до 
скорост 𝑣2 или по-голяма.  
 
Нека в даден момент тялото (с маса 𝑚) се намира на разстояние 𝑟 от центъра на облака. То ще 

изпитва привличане само от масата, вписана в радиус 𝑟 (вж §2.), тоест масата 𝑀in =
4

3
𝜋𝑟3𝜌, 

където 𝜌 =
𝑀

4

3
𝜋𝑅3

 е плътността на облака. Получаваме 𝑀in = 𝑀
𝑟3

𝑅3 и гравитационната сила, 

действаща на тялото, ще е 𝐹 =
𝛾𝑀𝑖𝑛𝑚

𝑟2 =
𝛾𝑀𝑚

𝑅3 𝑟. Когато тялото се отдалечи от центъра на облака с 

много малко разстояние 𝑑𝑟, извършената от гравитационните сили много малка работа е 𝑑𝐴 =
−𝐹𝑑𝑟. Тук поставихме минус, тъй като отдалечаването на тялото от центъра на облака става в 
направление, обратно на това на вектора на гравитационната сила. Достигнахме до 𝑑𝐴 =

−
𝛾𝑀𝑚

𝑅3 𝑟𝑑𝑟. Цялата работа 𝐴, която гравитационните сили ще извършат за придвижването на 

тялото между разстояние от центъра 𝑟 = 0 и разстояние от центъра 𝑟 = 𝑅, можем да намерим с 
интегриране: 

∫ 𝑑𝐴
𝐴

0

= ∫ −
𝛾𝑀𝑚

𝑅3
𝑟𝑑𝑟

𝑅

0

 

В лявата страна ∫ 𝑑𝐴
𝐴

0
= 𝐴 − 0 = 𝐴. В дясната страна −

𝛾𝑀𝑚

𝑅3  е константа, при което е вярно, че 

∫ −
𝛾𝑀𝑚

𝑅3
𝑟𝑑𝑟

𝑅

0

= −
𝛾𝑀𝑚

𝑅3
∫ 𝑟𝑑𝑟

𝑅

0

 

Но ∫ 𝑟𝑑𝑟
𝑅

0
=

𝑅2

2
−

02

2
=

𝑅2

2
. Затова 𝐴 = −

𝛾𝑀𝑚

𝑅3 ×
𝑅2

2
= −

𝛾𝑀𝑚

2𝑅
. Известно е, че изменението на 

кинетичната енергия на обект е равна на работата на всички сили върху него (отново от §2.). За 

тялото в задачата началната кинетична енергия е 
𝑚𝑣0

2

2
, а кинетичната енергия на 𝑟 = 𝑅 трябва да 

е поне 
𝑚𝑣2

2

2
. Минималното 𝑣0, търсено в задачата, намираме с 

𝑚𝑣2
2

2
−

𝑚𝑣0
2

2
= −

𝛾𝑀𝑚

2𝑅
 

𝑣2
2 − 𝑣0

2 = −
𝛾𝑀

𝑅
 



2𝛾𝑀

𝑅
− 𝑣0

2 = −
𝛾𝑀

𝑅
 

Тогава 𝑣0 = √
3𝛾𝑀

𝑅
. ∎ 

 
Задача 3. Спътник. 

• Намерете налягането на въздуха 𝑝(ℎ) като функция на височината над морското 
равнище. Може да приемете, че температурата на въздуха 𝑇 не се променя. Моларната 
маса на въздуха е 𝜇. Налягането на морското равнище е 𝑝0. Универсалната газова 
константа е 𝑅. Земното ускорение на морското равнище е 𝑔. Радиусът на Земята е 𝑅З. 

• Големината на силата на съпротивление, която действа на някакъв обект при неговото 

движение в атмосферата, се изразява с 𝐹съпр = 𝑘𝜌𝑎𝑆𝑏𝑣𝑐, където 𝑘 е безразмерен 

коефициент, 𝜌 е плътността на въздуха на съответната височина над морското равнище, 
𝑆 е лицето на максималното напречно сечение на обекта, а 𝑣 е големината на скоростта, 
с която той се движи. Чрез анализ на размерностите намерете неизвестните степени 𝑎, 𝑏 
и 𝑐. 

Кълбовиден спътник има маса 𝑚 = 100 kg и радиус 𝑅С = 0,5 m. Спътникът се движи 
приблизително по кръгова орбита на височина 𝐻 = 200 km над морското равнище. 
Разредената земна атмосфера оказва върху спътника сила на съпротивление както в предната 
подточка, с коефициент 𝑘 = 0,6. Числените стойности на константите, които ще са ви 
необходими, са дадени по-долу. 

• Определете периода 𝜏, за който спътникът прави една пълна обиколка по своята орбита 
около Земята. 

• Определете мощността 𝑃, която силата на съпротивление оказва върху спътника. За 
определяне на съответната плътност на въздуха използвайте формулата, получена в 
първата подточка. 

• Силата на съпротивление принуждава спътника да се движи по спиралообразна крива. 
Въпреки това моментното му движение може да се апроксимира достатъчно добре като 
движение по окръжност с бавно намаляващ радиус 𝑟(𝑡) = 𝑅З + ℎ(𝑡). Изразете пълната 
механична енергия на спътника чрез масата му 𝑚 и неговата моментна големина на 
скоростта 𝑣(𝑡). Като използвате израза за мощността на силата на съпротивление, 
получен в предната подточка, намерете началната стойност на 𝑣̇ (големината на 
тангенциалното ускорение на спътника). Намалява или расте големината на скоростта на 
спътника? 

• Като използвате израза за 𝑣̇, определете началното ъглово ускорение 𝜀 на сателита. 

• Оценете изменението (спрямо първоначалната височина 𝐻) на височината на спътника 
над морската повърхност, породено от силата на съпротивление за време 𝜏 (една 
обиколка на спътника около Земята). 

В задачата се изискват и буквени изрази, и числени стойности, където това е възможно. 
Справочни данни: 
𝑇 – 288 K 
𝜇 – 29,0 g/mol 
𝑝0 – 101 kPa 

𝑅 – 8,31
J

mol∙K
 

𝑔 – 9,81 m/s2 
𝑅З – 6,37 × 106 m 

Упътване: ∫
𝑑𝑥

(𝑐1𝑥+𝑐2)2 = −
1

𝑐1(𝑐1𝑥+𝑐2)
+ 𝑐𝑜𝑛𝑠𝑡; 𝑐1 и 𝑐2 – произволни константи. Величината 

мощност има смисъл на работата за единица време, тоест 
𝑑𝐴

𝑑𝑡
. 

 
 



Решение: 
а) Да разгледаме цилиндричен слой от атмосферата с много малка ширина 𝑑ℎ 
и с площ на основата 𝑆. Ако слоят се намира на височина ℎ над земната 
повърхност и съответната плътност на атмосферата е 𝜌(ℎ), то масата на слоя е 

𝑆𝜌(ℎ)𝑑ℎ и му действа гравитационна сила 𝐹𝑔 =
𝛾𝑀З𝑆𝜌(ℎ)𝑑ℎ

(𝑅З+ℎ)2 , където 𝑀З =
𝑔𝑅З

2

𝛾
 е 

масата на Земята. За да може слоят да е в равновесие, трябва гравитационната 
сила да се компенсира от друга сила, породена от разликата 𝑑𝑝 в 
атмосферните налягания под и над слоя. Тази сила 𝐹𝑝 = 𝑆𝑑𝑝 е насочена 

обратно на 𝐹𝑔. Затова записваме 𝑆𝑑𝑝 = −
𝑔𝑅З

2𝑆𝜌(ℎ)𝑑ℎ

(𝑅З+ℎ)2
. Знакът минус отчита, че 

при малко увеличаване на височината 𝑑ℎ има малко намаляване на налягането 
𝑑𝑝 (т.е. при положително 𝑑ℎ има отрицателно 𝑑𝑝). Според уравнението на 

идеалния газ 𝑝 =
𝜌

𝜇
𝑅𝑇 (от §19.). Затова 𝑑𝑝 = −

𝜇𝑔𝑅З
2𝑝𝑑ℎ

𝑅𝑇(𝑅З+ℎ)2 и съответно 
𝑑𝑝

𝑝
=

−
𝜇𝑔𝑅З

2𝑑ℎ

𝑅𝑇(𝑅З+ℎ)2. Интегрираме последното равенство от 0 до ℎ в дясната страна (ℎ е 

произволна височина) и от 𝑝(0) до 𝑝(ℎ) в лявата страна: 

∫
1

𝑝
𝑑𝑝

𝑝(ℎ)

𝑝(0)

= −
𝜇𝑔𝑅З

2

𝑅𝑇
∫

1

(𝑅З + ℎ)2
𝑑ℎ

ℎ

0

 

ln 𝑝(ℎ) − ln 𝑝(0) = −
𝜇𝑔𝑅З

2

𝑅𝑇
((−

1

𝑅З + ℎ
) − (−

1

𝑅З + 0
)) 

ln (
𝑝(ℎ)

𝑝(0)
) = −

𝜇𝑔𝑅З
2

𝑅𝑇
(

ℎ

𝑅З(𝑅З + ℎ)
) 

𝑝(ℎ)

𝑝(0)
= 𝑒

−
𝜇𝑔𝑅Зℎ

𝑅𝑇(𝑅З+ℎ) 

По условие 𝑝(0) ⇔ 𝑝0. Затова 𝑝(ℎ) = 𝑝0𝑒
−

𝜇𝑔𝑅Зℎ

𝑅𝑇(𝑅З+ℎ). Когато ℎ ≪ 𝑅, можем да получим 

приближената формула 𝑝(ℎ) = 𝑝0𝑒−
𝜇𝑔ℎ

𝑅𝑇 . Тя се нарича барометрична формула и често се 
използва в метеорологията. 
б) В 𝐹съпр = 𝑘𝜌𝑎𝑆𝑏𝑣𝑐 размерностите на лявата и дясната страна трябва да са еднакви. Лявата 

страна ще има размерност на нютони N, тъй като е сила. Но като мерна единица N ⇔ kg ∙
m

s2, 

защото силата е практически маса по ускорение. Размерността на 𝜌𝑎 е kg𝑎/m3𝑎, на 𝑆𝑏 е m2𝑏 и 
на 𝑣𝑐 е m𝑐/s𝑐. Съответно трябва kg𝑎 ∙ m−3𝑎 ∙ m2𝑏 ∙ m𝑐 ∙ s−𝑐 да съвпада с размерността на лявата 
страна kg1 ∙ m1 ∙ s−2. Получаваме равенствата 𝑎 = 1, −3𝑎 + 2𝑏 + 𝑐 = 1 и – 𝑐 = −2. От тях 𝑎 = 1, 
𝑏 = 1, 𝑐 = 2, така че 𝐹съпр = 𝑘𝜌𝑆𝑣2. Изобщо, анализът на размерности като метод е полезен за 

извеждане на формула за дадена величина, стига да е известно от кои параметри се определя 
величината. Получената по този начин формула ще е точна до коефициент, но опитът показва, 
че в повечето физични закони коефициентите са близки до единица. 

в) По третия закон на Кеплер 
(𝑅З+𝐻)3

𝜏2
=

𝛾𝑀З

4𝜋2
. Представяйки това с известни величини, 

(𝑅З+𝐻)3

𝜏2
=

𝑔𝑅З
2

4𝜋2
. Получаваме 𝜏 =

2𝜋(𝑅З+𝐻)

𝑅З
√

𝑅З+𝐻

𝑔
≈ 88,4 min. Друг начин да намерим 𝜏 е с разглеждане на 

гравитационната сила като центростремителна. 
г) Силата на съпротивление действа обратно на направлението на движение на спътника. 
Затова при преместване 𝑠 на спътника силата ще е извършила работа 𝐴 = 𝐹съпр𝑠 cos 180° =

−𝐹съпр𝑠 (от §2.). За много малък интервал от време 𝐹съпр не се изменя, така че 𝑑𝐴 = −𝐹съпр 𝑑𝑠. 

Делим двете страни на 𝑑𝑡, при което 𝑃 = −𝐹съпр𝑣 (тук 𝑣 =
𝑑𝑠

𝑑𝑡
=

2𝜋(𝑅З+𝐻)

𝜏
= 𝑅З√

𝑔

𝑅З+𝐻
 е скоростта 

на спътника). Тогава 𝑃 = −𝑘𝜌𝑆𝑣3. Използваме, че 𝜌(𝐻) =
𝑝(𝐻)𝜇

𝑅𝑇
, при което 𝑃 =

−𝑘
𝑝(𝐻)𝜇

𝑅𝑇
𝜋𝑅С

2𝑅З
3 (

𝑔

𝑅З+𝐻
)

3/2

. Заместваме в това 𝑝(𝐻) по формулата в първата подточка: 𝑃 =



−
𝑘𝜋𝜇𝑅С

2𝑅З
3

𝑅𝑇
(

𝑔

𝑅З+𝐻
)

3/2

𝑝0𝑒
−

𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻) ≈ −27 W. Пресметнахме мощността на височина 𝐻, но трябва 

да се има предвид, че 𝑃 се променя с височината. 
д) Когато височината на спътника е ℎ(𝑡), пълната механична енергия по орбитата ще бъде 𝐸 =

−
𝛾𝑀З𝑚

2(𝑅З+ℎ(𝑡))
= −

𝑔𝑅З
2𝑚

2(𝑅З+ℎ(𝑡))
. По формулата за кръгова скорост 𝑣(𝑡) = √

𝛾𝑀З

𝑅З+ℎ(𝑡)
= √

𝑔𝑅З
2

𝑅З+ℎ(𝑡)
, откъдето 

𝑅З + ℎ(𝑡) =
𝑔𝑅З

2

𝑣2(𝑡)
 и 𝐸 = −

𝑚𝑣2(𝑡)

2
. От 𝐸 = −

𝑔𝑅З
2𝑚

2(𝑅З+ℎ(𝑡))
 е ясно, че с намаляване на височината на 

спътника намалява и пълната механична енергия. В израза 𝐸 = −
𝑚𝑣2(𝑡)

2
 това означава, че 𝑣2(𝑡)  

постепенно ще се увеличава, тоест големината на скоростта на спътника ще расте. Сега 

диференцираме двете страни на последното равенство по времето, с което 
𝑑𝐸

𝑑𝑡
= −𝑚𝑣(𝑡)

𝑑𝑣

𝑑𝑡
. 

Реално 
𝑑𝐸

𝑑𝑡
= 𝑃, а като запис 

𝑑𝑣

𝑑𝑡
⇔ 𝑣̇, така че 𝑣̇ = −

𝑃

𝑚𝑣(𝑡)
. Началната стойност на 𝑣̇ можем да 

пресметнем след заместване на стойностите на 𝑃 и 𝑣(𝑡) за височина 𝐻: 𝑣̇ =

𝑘𝜋𝜇𝑔𝑅С
2𝑅З

3

𝑚𝑅𝑇(𝑅З+𝐻)
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻) ≈ 3,4 × 10−5 m/s2.  

е) Ъгловото ускорение на спътника ще бъде 𝜀 =
𝑑𝜔

𝑑𝑡
, където 𝜔 е моментната ъглова скорост на 

спътника. От условието на задачата е ясно, че 𝑣(𝑡) = 𝜔(𝑡)𝑟(𝑡), където 𝑟(𝑡) = 𝑅З + ℎ(𝑡). 

Диференцирането по времето дава 
𝑑𝑣

𝑑𝑡
= 𝜔(𝑡)

𝑑𝑟

𝑑𝑡
+ 𝑟(𝑡)

𝑑𝜔

𝑑𝑡
. Следва, че 𝜀 =

𝑑𝑣

𝑑𝑡
−

𝑣(𝑡)

𝑟(𝑡)
×

𝑑𝑟

𝑑𝑡

𝑟(𝑡)
. Вече знаем 

𝑑𝑣

𝑑𝑡
, а 

𝑑𝑟

𝑑𝑡
 ще изразим с помощта на 𝐸 = −

𝑔𝑅З
2𝑚

2𝑟(𝑡)
, което дава 

𝑑𝐸

𝑑𝑡
=

𝑔𝑅З
2𝑚

2𝑟2(𝑡)
×

𝑑𝑟

𝑑𝑡
. Така 

𝑑𝑟

𝑑𝑡
=

2𝑟2(𝑡)

𝑔𝑅З
2𝑚

𝑃. 

Затова началното ъглово ускорение е равно на 

       𝜀 = (
𝑘𝜋𝜇𝑔𝑅С

2𝑅З
3

𝑚𝑅𝑇(𝑅З+𝐻)
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻) −
𝑅З

𝑅З+𝐻
√

𝑔

𝑅З+𝐻
×

2(𝑅З+𝐻)2

𝑔𝑅З
2𝑚

(−
𝑘𝜋𝜇𝑅С

2𝑅З
3

𝑅𝑇
(

𝑔

𝑅З+𝐻
)

3

2
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻))) /(𝑅З + 𝐻)  

Това се опростява до 

                                      𝜀 = (
𝑘𝜋𝜇𝑔𝑅С

2𝑅З
3

𝑚𝑅𝑇(𝑅З+𝐻)
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻) +
2𝑘𝜋𝜇𝑔𝑅С

2𝑅З
2

𝑚𝑅𝑇(𝑅З+𝐻)
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻)) /(𝑅З + 𝐻) 

И стигаме до 𝜀 =
3𝑘𝜋𝜇𝑔𝑅С

2𝑅З
2

𝑚𝑅𝑇(𝑅З+𝐻)2 𝑝0𝑒
−

𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻) ≈ 1,6 × 10−11 rad/s2. 

ж) Спътникът пада към Земята сравнително бавно, така че за падането с течение на една 

обиколка по орбитата ще вземем 
𝑑𝑟

𝑑𝑡
 за постоянно. Така 

                           Δℎ ≈
𝑑𝑟

𝑑𝑡
𝜏 =

2(𝑅З+𝐻)2

𝑔𝑅З
2𝑚

(−
𝑘𝜋𝜇𝑅С

2𝑅З
3

𝑅𝑇
(

𝑔

𝑅З+𝐻
)

3

2
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻)) ×
2𝜋(𝑅З+𝐻)

𝑅З
√

𝑅З+𝐻

𝑔
 

Затова Δℎ ≈ −
4𝑘𝜋2𝜇𝑅С

2(𝑅З+𝐻)2

𝑚𝑅𝑇
𝑝0𝑒

−
𝜇𝑔𝑅З𝐻

𝑅𝑇(𝑅З+𝐻), откъдето Δℎ ≈ −300 m. ∎ 

 

ЗАДАЧИ 
 

Задача 4. Слънце. Приема се, че формирането на звездите започва с процеса на свиване на 
водороден газ под действие на силите на гравитационно привличане. При свиването на газа 
температурата му нараства. Налягането на нагретия газ противодейства на гравитационното 
свиване. Поради излъчване на електромагнитни вълни газът губи част от енергията на 
топлинното движение и свиването продължава до започване на термоядрени реакции, които 
поддържат температура 𝑇0 ≈ 107 K. Тогава звездата достига равновесие. Приемете, че 
Слънцето е звезда с маса 𝑀 = 2 × 1030 kg и постоянна плътност. При това предположение 
оценете радиуса на Слънцето 𝑅 и плътността му 𝜌. 
 
Задача 5. Смърт на черна дупка. Както е известно, черните дупки трябва с времето да се 
“изпаряват”, при което тяхното излъчване се явява чернотелно, а дължината на вълната, 



съответстваща на максималния интензитет в спектъра, е равна на гравитационния радиус на 
черната дупка.  

• Оценете времето, което ще премине между момента, в който светимостта на черната 
дупка е равна на слънчевата, и момента, в който черната дупка напълно ще се изпари. 

• В какъв спектрален диапазон на електромагнитното лъчение ще излъчва основно 
черната дупка в момента, в който светимостта й е равна на слънчевата? (СПбАО2015-II-
11) 

 
Задача 6. Галактичен куп.  

• Използвайки вириалната теорема за изолирана сферична система (т.е. −2〈𝐾〉 = 〈𝑈〉), 
където 〈𝐾〉 е средната кинетична енергия, а 〈𝑈〉 е средната потенциална енергия на 
системата, намерете израз за пълната маса на куп от галактики, за който знаем радиуса 𝑅 
и дисперсията 𝜎 на лъчевите скорости на галактиките. Примете купа за изолиран, 
сферичен, еднороден и изграден от галактики с еднакви маси. 

• Намерете вириалната маса (т.е. масата, изчислена с вириалната теорема) на галактичния 
куп в Косите на Вероника, намиращ се на 90 Mpc от нас. Дисперсията на лъчевите 
скорости на галактиките в него е 𝜎𝑣r

= 1000 km/s и ъгловият му размер на небето е 

около 4°. 

• От наблюдения е определено, че пълната светимост на галактиките от купа в Косите на 
Вероника е приблизително 𝐿 = 5 × 1012 L⊙. Ако отношението маса-светимост за купа 

беше 
𝑀[M⊙]

𝐿[L⊙]
≈ 1 (т.е. ако цялата маса на купа беше видима), това щеше да даде маса на 

купа 𝑀 ≈ 5 × 1012 𝑀⊙. Намерете отношението на наблюдаемата маса на купа към 
цялата маса на купа, получена в предишната подточка. (IOAA2013) 

Упътване: Изведете израз за потенциалната енергия 𝑈(𝑀, 𝑅), складирана в 
самогравитираща сфера с маса 𝑀 и радиус 𝑅. Ако се “внесе” енергия |𝑈| в сферата, тя няма 
повече да може да се задържи цяла под действие на собствената си гравитация. 
Дисперсията на лъчевите скорости в галактичния куп представлява средноквадратичната 
стойност на отклоненията на лъчевите скорости на галактиките от лъчевата скорост на 
центъра на масите на купа. 
 
Задача 7. Разпад на орбита. Двойният пулсар PSR B1913+16 се състои от две неутронни звезди с 
приблизително еднакви маси, равни на 1,4 M⊙, средното разстояние между които е 2 ×

106 km. Известно е, че в резултат на излъчването на гравитационни вълни от страна на 
системата орбиталният й период намалява с 80 микросекунди на година. Оценете отношението 
на гравитационната светимост на PSR B1913+16 към светимостта му в оптичния диапазон, ако е 
известно, че той се намира на 7 kpc от Слънцето и че блясъкът му в оптичния диапазон е +22m. 
(СПбАО2016-II-11) 
Упътване: Може ли да се пренебрегне междузвездното поглъщане?  
 
Задача 8. Гравитационна вълна. Гравитационната вълна представлява смущение в геометрията 
на пространството, което се разпространява с крайна скорост 𝑐. От практическа гледна точка 
гравитационната вълна се проявява като деформация на телата, през които преминава. 
Гравитационните вълни се излъчват от масивни обекти, които се движат с ускорение, например: 
въртящо се несиметрично тяло, двойка звезди, обикалящи около общия им център на масите, 
неизотропен взрив на свръхнова, сблъсък между космически обекти и др. 

• Гравитационната вълна предизвиква деформация на телата в равнина, перпендикулярна 
на посоката на разпространение на вълната. Деформацията се изразява в еднородно 
разтягане (свиване) на тялото 𝑘 пъти в дадено направление 𝑋 и едновременно свиване 
(разтягане) 1/𝑘 пъти в перпендикулярното направление 𝑌, както е показано на фигурата. 
В случай на слаби гравитационни вълни, породени от далечни космически обекти, 
коефициентът на разтягане 𝑘 се мени по хармоничен закон: 



𝑘(𝑡) = 1 + ℎ sin 𝜔𝑡 
където ℎ ≪ 1 е безразмерната амплитуда на вълната. Тя има смисъл на максимална 
относителна деформация, предизвикана от вълната. 

Нека означим с 𝐼 интензитета на вълната, т.е. количеството енергия, което вълната 
пренася за единица време през единица площ, ориентирана перпендикулярно на 
посоката на разпространение. Както при механичните вълни, интензитетът на 
гравитационната вълна е пропорционален на квадрата на нейната амплитуда: 

𝐼 = 𝑓(𝜔, 𝛾, 𝑐)ℎ2 
където коефициентът на пропорционалност 𝑓 зависи от кръговата честота на вълната 𝜔 и 
фундаменталните константи 𝛾 и 𝑐. Определете вида на функцията 𝑓 с точност до 
безразмерен множител. 

• Гравитационна вълна е породена от двойка звезди с маси 𝑀1 и 𝑀2, обикалящи около 
общия си център на масата на разстояние 𝑟 една от друга, както е показано на фигурата. 
Съгласно с общата теория на относителността, амплитудата на вълната на разстояние 𝑅 
от звездите (𝑅 ≫ 𝑟) се дава с израза: 

ℎ = 𝐾(𝛾, 𝑐)
𝐸𝑘

𝑅
 

където 𝐸𝑘 е кинетичната енергия на звездите, а 𝐾 е коефициент на пропорционалност, 
зависещ само от фундаменталните константи 𝛾 и 𝑐. Получете израз за 𝐾 с точност до 
безразмерен множител. 

• За двойната система от фигурата получете с точност до безразмерен множител израз за 
пълната мощност 𝑃, излъчвана под формата на гравитационни вълни, като функция на 
масите на звездите, разстоянието между тях и фундаменталните константи 𝛾 и 𝑐. 

• Загубата на енергия под форма на гравитационни вълни води до бавно намаляване на 

разстоянието между двойката звезди. Получете израз за скоростта 
𝑑𝑟

𝑑𝑡
, с която се променя 

разстоянието между звездите, ако приемете, че относителното изменение на 
разстоянието за една обиколка е много малко. Релативистките ефекти да не се отчитат. 
Всички безразмерни коефициенти от предишните подточки водят до множител 64/5, 
който можете да използвате наготово в окончателния израз. 

• За колко време 𝑡d разстоянието между звездите в системата ще се промени от 
определена начална стойност 𝑟0 до крайна стойност 𝑟1 (𝑟1 < 𝑟0)? 

• В проведения наскоро експеримент за детектиране на гравитационна вълна е 
регистрирана вълна от двойка черни дупки, въртящи се около общия си център на 
масата. Честотата на регистрирания сигнал се изменя от 45 Hz до 360 Hz за време 𝑡 =
0,15 𝑠, след което се предполага, че двете черни дупки са се сблъскали и слели. Ако 
приемете, че масите на двете черни дупки са еднакви, определете числено тяхната маса 
𝑀, началното разстояние 𝑟0 между тях и разстоянието 𝑟𝐶, при което е настъпил 
сблъсъкът. Не е нужно да получавате аналитични изрази за търсените величини. 
Релативистките ефекти не се отчитат. 

Упътване: За хармоничен осцилатор с период 𝑇 така наречената кръгова честота е 𝜔 =
2𝜋

𝑇
. 

 



Задача 9. Планета*. След началото на междузвездните полети около една от звездите била 
открита планета, състояща се от необичайно вещество. Изследването на образци от това 
вещество показало, че при увеличаване на налягането му то се свива, при което налягането на 
веществото 𝑃 и плътността му 𝜌 са свързани със съотношението 𝑃 = 𝐾𝜌2, където 𝐾 е някаква 
константа. Много други свойства на веществото го правели наистина безценно. Затова въпреки 
отдалечеността на планетата от Земята и цената за транспорт, бил започнат добив на 
веществото в огромни мащаби. Забелязало се, че колкото и вещество да се извозва от 
планетата, размерът й не се променял. Намерете радиуса на планетата. 
Упътване: Нека хармоничен осцилатор с амплитуда 𝐴 е отклонен от равновесното си 
положение на разстояние 𝑥 в даден момент 𝑡, като за 𝑡 = 0 взимаме произволно негово 
преминаване през равновесното положение. Кръговата честота на осцилатора е 𝜔. Доказва 

се, че уравнението на движение на осцилатора е 
𝑑2𝑥

𝑑𝑡2 
+ 𝜔2𝑥 = 0 (как?). Решението на това 

диференциално уравнение, тоест функцията, за която то е изпълнено, е 𝑥 = 𝑏 sin 𝜔𝑡, 
където 𝑏 е някаква константа. Синусът по абсолютна стойност е най-много 1, така че 
максималното отклонение на осцилатор от равновесното му положение е именно 𝑏. Това 
означава, че 𝑏 ⇔ 𝐴. В задачата няма релативистки ефекти, говорим за нютонова 
гравитация. Използвайте уравнението на хидростатичното равновесие. 
 

Задача 10. Инфлация*. Поради отдалечаването на галактиките относно Земята дължините на 

вълните в спектъра на дадена галактика са изместени от съответните лабораторни дължини. 

Това е известно като електромагнитен ефект на Доплер. За произволна извадка от галактики би 

се очаквало равномерно разпределение на изместванията в дължините – някои да са 

положителни (червено отместване), а други да са отрицателни (синьо отместване). Но 

наблюденията показват, че всички галактики претърпяват червено отместване, с изключение на 

някои близки галактики. Това би било вярно, дори и ако наблюденията се правят от различна 

част на Вселената. В заключение, Вселената трябва да се разширява. Нееднородността на 

Вселената може да се пренебрегне в мащаби над 100 Mpc, където 1 pc ⇔ 3,26 ly. За големи 

мащаби разпределението на галактиките в пространството става все по-изотропно (независещо 

от посоката) и все по-хомогенно (независещо от позицията). Затова може да приемем Вселената 

за разширяваща се еднородна материя с плътност 𝜌. 

 

За прост модел на Вселената нека разгледаме разширяваща се еднородна сфера, намираща се 

в среда със същата плътност. Да кажем, че в даден момент радиусът на сферата е 𝑅𝑠. За да се 

опише разширението на сферата, радиусът в зависимост от времето 𝑅(𝑡) се изразява с мащабен 

фактор 𝑎(𝑡), така че 𝑅(𝑡) = 𝑎(𝑡)𝑅𝑆. С помощта на закона на Нютон за гравитацията и чрез 

разглеждането на елемент с произволна маса върху границите на сферата може да бъде 

получено едно от уравненията на Фридман: 

(
𝑎̇

𝑎
)

2

= 𝐴1𝜌(𝑡) −
𝑘𝑐2

𝑅𝑠
2𝑎2(𝑡)

 

Тук 𝑘 е безразмерна константа, а 𝑐 е скоростта на светлината. 

• Определете константата 𝐴1 в уравнението. 

Дотук разглеждахме нерелативистка система. Но казаното досега може да се ползва и за 

релативистка система, интерпретирайки 𝜌(𝑡)𝑐2 като пълна плътност на енергията (с изключение 

на гравитационната потенциална енергия). Тогава може да бъде получено второто уравнение 

на Фридман: 

𝜌̇ + 𝐴2 (𝜌 + (
𝑝

𝑐2
))

𝑎̇

𝑎
= 0 



В уравнението 𝑝 е налягането за сферата. Извеждането на уравнението става с използването на 

първия принцип на термодинамиката за адиабатна система. 

• Определете константата 𝐴2 в уравнението. 

За да се намерят решенията на двете уравнения на Фридман, трябва да се предположи 

зависимост от вида 𝑝 = 𝑝(𝜌), а по-специфично 
𝑝(𝑡)

𝑐2
= 𝑤𝜌(𝑡), където 𝑤 е константа. Въвежда се и 

параметър 𝐻 =
𝑎̇

𝑎
, наречен параметър на Хъбъл. Стойностите на параметрите в днешно време 

обикновено се означават с индекс 0, например 𝑡0, 𝜌0, 𝐻0, 𝑎0 и така нататък. За простота взимаме 

𝑎0 = 1. 

Смята се, че Вселената води началото си от т.нар. Голям взрив, който произвежда лъчение от 

релативистки частици. С разширяването си Вселената се охлажда и частиците в нея стават 

нерелативистки. Скорошните наблюдения показват, че във Вселената днес преобладава някаква 

постоянна плътност на енергията, наречена космологична константа. А ако става дума за 

фотони, с разширението на Вселената дължината на вълната за фотона се увеличава 

пропорционално на мащабния фактор. 

• За всеки от следните три случая намерете стойността на 𝑤: 

(i) Вселена, изпълнена само с лъчиста енергия (енергия от фотони); 

(ii) Вселена, изпълнена само с нерелативистка материя; 

(iii) Вселена, за която плътността на енергията остава една и съща с времето. 

• Ако 𝑘 = 0, намерете 𝑎(𝑡) за случаите (i), (ii) и (iii). За целта като начално условие 

използвайте 𝑎(𝑡 = 0) = 0 в (i) и (ii), а за (iii) ползвайте 𝑎0 = 1. В аналитичните изрази 

𝑎(𝑡) трябва да се задава с 𝑡 и 𝐻0 или 𝑡0.  

Константата 𝑘 в първото уравнение на Фридман има отношение към пространствената 

геометрия на Вселената. Стойността й може да е 𝑘 = +1 за Вселена с положителна кривина 

(т.нар. затворена Вселена), 𝑘 = 0 за плоска Вселена (безкрайна) и 𝑘 = −1 за Вселена с 

отрицателна кривина (безкрайна; т.нар. отворена Вселена). Да дефинираме като параметър на 

плътността Ω =
𝜌

𝜌𝐶
, където 𝜌𝐶𝑐2 =

𝐻2

𝐴1
𝑐2 е т.нар. критична плътност на енергията. Отбелязваме, 

че константата 𝐴1 може да се получи от първата подточка. 

• Изразете 𝑘 в първото уравнение на Фридман като функция на Ω, 𝐻, 𝑎 и 𝑅0. 

• Намерете в какъв диапазон може да попада Ω за всяка от трите възможни стойности на 

𝑘, а именно 𝑘 = +1, 𝑘 = 0 и 𝑘 = −1. 

 

Наблюденията на космическия микровълнов фон (CMB) индикират, че Вселената в днешно 

време е приблизително плоска. Проблемът е, че ако това е вярно, ранната Вселена трябва да е 

точно плоска, тъй като тогава всякакво отклонение от плоска Вселена би нараснало с времето и 

така би си противоречало с наблюденията на CMB. 

• Намерете Ω(𝑡) − 1 като функция на времето за Вселена, която е доминирана от лъчение, 

и за Вселена, която е доминирана от нерелативистка материя. 

За да се реши описаният по-горе проблем, ранната Вселената би трябвало да претърпява 

период, доминиран от константна плътност на енергията (както в (iii)). Такъв период се 

характеризира с експоненциално разширение на Вселената и се нарича период на инфлация. 

• За този период намерете Ω(𝑡) − 1 като функция на времето. Приемете, че Ω(𝑡) − 1 ≪ 1. 

• Покажете, че от дефиницията за инфлация произтичат следните условия за периода на 

инфлация: 

- отрицателно налягане 𝑝 < 0 



- разширение на Вселената с ускорение 𝑎 > 0 

- намаляващ Хъблов радиус 
𝑑(𝑎𝐻)−1

𝑑𝑡
< 0 (Хъбловият радиус за даден наблюдател е 

разстоянието от него до най-близките обекти, отдалечаващи се от него със скорост 

над тази на светлината във ваккум). 

• Покажете, че условието за намаляващ Хъблов радиус изисква параметърът 𝜖 = −𝐻̇/𝐻2 

да е по-малък от 1. 

Инфлацията трае докато 𝜖 < 1 и свършва при 𝜖 = 1. Може да дефинираме число 𝑁, за което 

𝑑𝑁 = 𝑑 ln 𝑎 = 𝐻𝑑𝑡. В края на инфлацията 𝑁 = 0. 

 

Пример за проста физична система, която може да генерира период на инфлация, е Вселена, 

доминирана от хомогенно разпределена материя. Такъв тип материя се нарича инфлационна и 

може да се характеризира с функция 𝜙(𝑡). Динамичното уравнение на материята е  

𝜙̈ + 3𝐻𝜙̇ = −𝑉′ 

Тук 𝑉 = 𝑉(𝜙) е функция, за която 𝑉′ =
𝑑𝑉

𝑑𝜙
. Параметърът на Хъбъл удовлетворява 

𝐻2 =
1

3𝑀pl
2 (

1

2
𝜙2̇ + 𝑉) 

Тук 𝑀pl е константа, наречена редуцирана маса на Планк. Епохата на инфлация става при 

доминацията на “потенциалната енергия” 𝑉 над “кинетичната енергия” 
1

2
𝜙2̇ за достатъчно 

голямо време, така че членът 𝜙̈ в динамичното уравнение да може да се пренебрегне. Това е 

така нареченото “slow-roll” приближение. Величините 𝜖 и 𝜂𝑉 = 𝛿 + 𝜖, където 𝛿 = −
𝜙̈

𝐻𝜙̇
, се 

наричат “slow-roll” параметри. 

• Изразете параметрите 𝜖, 𝜂𝑉 и 
𝑑𝑁

𝑑𝜙
 чрез функцията 𝑉(𝜙) и нейните първа и втора 

производна 𝑉′ и 𝑉′′. 

Предсказаното за инфлацията от даден модел трябва да се сравни с ограниченията, получени от 

наблюденията на CMB. Въпросните ограничения са 𝑛𝑆 = 0,968 ± 0,006 и 𝑟 < 0,12, където 𝑛𝑆 =

1 + 2𝜂𝑉 − 6𝜖 и 𝑟 = 16𝜖 са дадени за момента на начало на инфлацията, т.е. за 𝜙 = 𝜙start. 

Приемете, че 𝑉(𝜙) = Λ4 (
𝜙

𝑀pl
)

𝑛

, където 𝑛 е цяло число, а Λ е константа. 

• Намерете 𝜙end – стойността на 𝜙 в края на инфлацията. 

• Изразете 𝑛𝑆 и 𝑟 като функции на 𝑁 и 𝑛. Взимайки 𝑁 = 60, оценете стойността на 𝑛, за 

която 𝑛𝑆 и 𝑟 са най-близки до наблюдателните данни. 

 

 



ОТГОВОРИ НА ПРИМЕРИТЕ 
 
Приложени са отговорите на примерите в 
отделните теми: 
 
1. МАТЕМАТИКА 

•  

•  
• 1 rad =

180

𝜋
°. 

• 2𝜋, 𝜋, 𝜋/2 , 𝜋/6. 

• Ако дъгата е 𝑙, то 
𝛿 [rad]

2𝜋
=

𝑙

2𝜋𝑅
, 

откъдето 𝑙 = 𝛿[rad]𝑅. 

• 
√3

2
 . 

• 1, 
√3

2
, 

√2

2
, 

1

2
, 0. 

• 0, 
√3

3
, √3. 

• Подвижните радиуси за 𝛼 и за 90° −
𝛼 са симетрични относно правата 𝑦 =
𝑥, откъдето следват първите две 
равенства. 
В единичната окръжност отсечките на 
sin 𝛼 и sin(180° − 𝛼) са върху Oy и 
съвпадат; така sin 𝛼 = sin(180° − 𝛼). 
В единичната окръжност отсечките на 
sin 𝛼 и sin(180° − 𝛼) са върху Ox и са 
симетрични спрямо (0,0); така 
sin 𝛼 = sin(180° − 𝛼). 

• Следва от Питагорова теорема в 
единичната окръжност. 

• [−1; 1] за синус/косинус, (−∞; +∞) 
за тангенс. 

• sin(𝛼 + 𝛼) = sin 𝛼 cos 𝛼 + cos 𝛼 sin 𝛼 
sin(2𝛼) = 2 sin 𝛼 cos 𝛼 

• cos(𝛼 + 𝛼) = cos 𝛼 cos 𝛼 − sin 𝛼 sin 𝛼 
cos(2𝛼) = cos2 𝛼 − sin2 𝛼 

• Питагорова теорема. 

• Построяваме на чертежа височина 

𝐴𝐻, като sin 𝛽 =
𝐴𝐻

𝑐
 и sin 𝛾 =

𝐴𝐻

𝑏
. 

Делим двете и стигаме до 
sin 𝛽

sin 𝛾
=

𝑏

𝑐
. 

Аналогично и с другите височини. 

• На същия чертеж отново построяваме 
височина 𝐴𝐻. Имаме 𝐴𝐻 = 𝑐 sin 𝛽 и 
𝐵𝐻 = 𝑐 cos 𝛽. В правоъгълния 𝐴𝐻𝐶 
Питагоровата теорема има вида 
(𝑐 sin 𝛽)2 + (𝑎 − 𝑐 cos 𝛽)2 = 𝑏2. От 
това следва 𝑏2 = 𝑐2 + 𝑎2 − 2𝑎𝑐 cos 𝛽 
(т.к. sin2 𝛽 + cos2 𝛽 = 1). Аналогично 
и с другите височини в триъгълника. 

• Ако 𝑏𝑚 = 𝑥𝑦, 𝑏𝑛 = 𝑥 и 𝑏𝑝 = 𝑦, то 
𝑚 = 𝑛 + 𝑝. Но 𝑚 = log𝑏(𝑥𝑦), 𝑛 =
log𝑏(𝑥) и 𝑝 = log𝑏(𝑦). 

Ако също 𝑏𝑞 =
𝑥

𝑦
, то 𝑞 = 𝑐 − 𝑑. Но 

𝑞 = log𝑏 (
𝑥

𝑦
). 

Ако също 𝑟 = log𝑏(𝑥𝑑), то 𝑏𝑟 = 𝑥𝑑 . 

Но 𝑏𝑚 = 𝑥 и 𝑏𝑚𝑑 = 𝑥𝑑 . Така 𝑚𝑑 = 𝑟 
и търсеното следва. 

Записът √𝑥
𝑦

 е еквивалентен на 𝑥1/𝑦. А 
според предишното правило е вярно 

log𝑏(𝑥1/𝑦) =
1

𝑦
log𝑏 𝑥. 

 
2. ЕЛЕМЕНТИ ОТ МЕХАНИКАТА – I 

• 𝑣avg =
2𝑣1𝑣2

𝑣1+𝑣2
. 

• 𝑡g =
2𝑣0

𝑔
. 

• 𝐹съпр = 𝑚𝑔. 

• 𝐴 = 𝑚 (
𝑣2

2
− 𝑔ℎ) = −30 kJ. 

• 𝑀 =
𝑔𝑅2

𝛾
≈ 5,97 × 1024 kg. 

• 
𝑔𝐸

𝑔𝐿
≈ 6,05. 

 
3. ЗАКОНИ НА КЕПЛЕР, ДВИЖЕНИЕ ПО 
ЕЛИПСА 

• Имаме 𝑏2 = 𝑎2(1 − 𝑒2) (от 1.). Затова 
трябва да докажем 𝑙 = 𝑎(1 − 𝑒2). За 

фокалната полухорда в 𝑟 =
𝑎(1−𝑒2)

1−𝑒 cos 𝜃
 

ъгълът е 𝜃 = 90°. Тогава получаваме 
𝑟 = 𝑙 = 𝑎(1 − 𝑒2). 



• 𝑟𝑝 = 𝑎 − 𝑓 = 𝑎 − 𝑒𝑎 = 𝑎(1 − 𝑒). 

𝑟𝑎 = 𝑎 + 𝑓 = 𝑎 + 𝑒𝑎 = 𝑎(1 + 𝑒).  
 
4. ОРБИТАЛНА МЕХАНИКА 

•  
 
5. ЪГЛОВ РАЗМЕР, ЪГЛОВА СКОРОСТ. 
ЛЪЧЕВА И ТАНГЕНЦИАЛНА СКОРОСТ. 
ПЛАНЕТНИ КОНФИГУРАЦИИ 

• Максимална западна елонгация. 
 
6. СИНОДИЧНИ ПЕРИОДИ 

• 
1

𝑇syn
=

1

𝑇𝐴
+

1

𝑇𝐵
. 

 
7. ЕЛЕМЕНТИ ОТ МЕХАНИКАТА – 2 

• 
𝑎𝑇𝑆

𝑎𝑇𝐿
≈ 0,46. 

• При новолуние и пълнолуние. 

• За 𝑃: √34. За 𝑄: 3√11.  

• 𝐼 = 𝑀𝑅2. 

• 𝐼 =
1

3
𝑀𝐿2. 

• 𝐼 =
1

2
𝑀𝑅2. 

• 𝐼 =
2

3
𝑀𝑅2. 

• 𝐼 =
1

3
𝑀1(𝐿1 − 𝑅)2 + 𝑀2 (

2

5
𝑅2 + 𝐿2). 

 
8. НЕБЕСНА СФЕРА 

• ≈ 2 h 20 m. 

• ≈ 0,985°/d. 

• ≈ 4,8 km. 

• 162,0625°. 

• 12 h. 

• 12 h. 

• 0° или 180° (вярно и за геодезичен, и 
за астрономически азимут). 

• ℎmax = 89°; ℎmax = −26°. 

• ≈ 13 h. 

• 𝜑 ∈ [− 𝜀; 𝜀]. 
𝜑 ∈ [−90°; 𝜀 − 90°] ∪ [90° − 𝜀;  90°]. 

• 𝜑 = −3°39′ или 𝜑 = 56°47′. 

• По пладне през лятното 
слънцестоене; през нощта, при 
облачно време. 

 
9. ГЕОМЕТРИЯ ВЪРХУ СФЕРА 

• Ако “радиусът на небесната сфера” е 
𝑅, то радиусът на паралела 𝐴𝐴′ на 
чертежа в §9. е 𝑅 cos 𝜑 (вж. схемата 
за пояснение). Затова дъгите върху 

𝑄𝑄′ и 𝐴𝐴′ с една 
и съща ъглова 
мярка са 
съответно с 
линеен размер 𝑎 
и 𝑎 cos 𝜑. 

 
 
 
 
10. ПРЕЦЕСИЯ. КАЛЕНДАР 

• 18 h, 66°33′ (северен); 6 h, −66°33′ 
(южен). 

• 365,2425 d. 
 
11. ВРЕМЕ 

• 6 h. 

• 18 h 29 m 32 s. 

• 12 h. 

• Разлика 7 h. 
В София 6 h 15 m (на 27 ноември), в 
Ню Йорк 23 h 15 m (на 26 ноември). 

 
12. ФАЗИ. ЗАТЪМНЕНИЯ 

• На схемата фазата на наблюдаваното 

тяло има смисъл на 𝑓 =
𝐵′𝐷

𝐶𝐷
. Тогава 

𝑓 =
𝑂𝐷−𝑂𝐵′

2𝑂𝐷
. Полагаме 𝑂𝐷 = 𝑐 и от 

𝑂𝐵′ = 𝑂𝐵 cos(180° − 𝜓) имаме 𝑓 =
𝑐+𝑐 cos 𝜓 

2𝑐
=

1+cos 𝜓

2
. 

• Максимална елонгация. 

• 29,53 d. 

• 𝑅0 ≈
𝑅ℂ𝑟

𝑅⊙
≈ 374500 km. 

• Земната атмосфера пречупва 
червената светлина към Луната, а 
разсейва другите дължини на 
видимата светлина. 



13. ПАРАЛАКС. АБЕРАЦИЯ 

• 0,033 mas. 

• Като отсечка. 
 
14. СВЕТЛИНА – I 

• 85 cm. 

• Прав, умален, недействителен. 

• Прав, умален, недействителен. 

• На схемата от двойките подобни 

триъгълници получаваме 
𝑀𝑂

𝑂𝐹
=

𝐶𝐷

𝑂𝐹
=

𝐶′𝐷′

𝐶′𝐹
 и 

𝐶𝐷

𝑂𝐶
=

𝐶′𝐷′

𝑂𝐶′
. Така 

𝐶𝐷

𝐶′𝐷′
=

𝑂𝐹

𝐶′𝐹
=

𝑂𝐶

𝑂𝐶′
. 

Следователно 
𝑓

𝑏−𝑓
=

𝑎

𝑏
. Тогава 𝑎𝑏 =

𝑎𝑓 + 𝑏𝑓 и след делене на 𝑎𝑏𝑓 имаме 
1

𝑎
+

1

𝑏
=

1

𝑓
. 

15. СВЕТЛИНА – II 

• ≈ 500 nm, което попада във 
видимата светлина. Очите на хората 
са се адаптирали така, че повечето 
електромагнитно излъчване от 
Слънцето да се възприема като 
видима светлина. 

• 1360 W/m2. 

• Влияят се, но ъгълът на падане ≈ 0°. 

• При черни платна импулсът, 
придаден от всеки фотон на 
платното, е два пъти по-малък, 
отколкото при огледални платна. 

 
16. ЗВЕЗДНА АСТРОФИЗИКА 

• 6,8 × 10−12 %. 

• ≈ 2 %. 
 
17. АТМОСФЕРНО И МЕЖДУЗВЕЗДНО 
ПОГЛЪЩАНЕ 

• 0,8. 
 
18. ЕФЕКТ НА ДОПЛЕР. КОСМОЛОГИЯ 

• ≈ 74 Mpc. 

• ≈ 0,09. 

• 𝐻 ≈ 7,16 × 10−11 yr. 
 
19. ТЕРМОДИНАМИКА 

• Mr = 180. 

• 𝑛𝑅(√𝑇3 − √𝑇1)
2
. 

• 0,6 Å (от околоосно въртене + 
топлинно движение). 

 
20. ДВОЙНИ ЗВЕЗДИ. ЕКЗОПЛАНЕТИ 

• На чертежа голямата полуос на 

относителната орбита е 𝑎 =
𝑟𝑎+𝑟𝑝

2
. Но 

на първата фигура 𝑟𝑎 може да се 
разбие на афелийните разстояния за 
двете отделни орбити 𝑟𝑎1 и 𝑟𝑎2. 
Аналогично 𝑟𝑝 може да се разбие на 

𝑟𝑝1 и 𝑟𝑝2. Но 𝑎1 =
𝑟𝑝1+𝑟𝑎1

2
 и 𝑎2 =

𝑟𝑝2+𝑟𝑎2

2
, а тогава може да се запише 

𝑎1 + 𝑎2 =
𝑟𝑝1+𝑟𝑎1+𝑟𝑝2+𝑟𝑎2

2
=

(𝑟𝑝1+𝑟𝑎1)+(𝑟𝑝2+𝑟𝑎2)

2
=

𝑟𝑝+𝑟𝑎

2
= 𝑎. 

• Главен: 1m, 24. Вторичен: 0m, 12. 

• ≈ −10 km/s; ≈ 8,1 M⊙. 
 
21. ВИСША МАТЕМАТИКА* 

• 12𝑥3 + 12𝑥2 + 12𝑥 − 19; 
𝑥−3

𝑥4 𝑒𝑥. 

• 𝑚 = 0. 

• 𝑃 = 2(𝑎 + 𝑏), 𝑆 = 𝑎𝑏 = 𝑎 (
𝑃−2𝑎

2
). 

Затова 𝑆 =
𝑃𝑎−2𝑎2

2
. Има максимум на 

𝑆 при 
𝑃

2
− 2𝑎 = 0, тоест при 𝑃 = 4𝑎, 

т.е. за 𝑎 = 𝑏, което е квадрат. 

• 
2

𝑥
; −6𝑒cos(6𝑥−1) sin(6𝑥 − 1). 

• 3 и 6. 

• 𝑥6 −
3

4
𝑥4 + 𝐶; sin 𝑥 − 𝑥 cos 𝑥 + 𝐶; 

sin2 𝑥

2
+ 𝐶. 

• 24; ≈ 47,21. 



РЕШЕНИЯ НА ЗАДАЧИТЕ 
 
1.1. Венера. Ъглите, на който се намират 
Меркурий и Венера от Слънцето, са най-
големи тогава, когато ъглите Земя-Венера-
Слънце и Земя-Меркурий-Слънце са равни на 
90°. Означаваме с 𝑟𝑚, 𝑟𝑣 и 𝑟𝑒 съответно 
радиусите на орбитите на Меркурий, Венера и 
Земята. По условие ъгъл 𝛼 на чертежа е равен 

на 46°. И тъй като sin 𝛼 =
𝑟𝑣

𝑟𝑒
, то 𝑟𝑣 = 0,72𝑟𝑒, т.е. 

𝑟𝑣 = 𝟎, 𝟕𝟐 𝐀𝐔. При случая с Меркурий sin 𝛽 =
𝑟𝑚

𝑟𝑒
=
0,3 AU

1 AU
= 0,3. Тогава 𝛽 = arcsin 0,3 ≈

𝟏𝟕, 𝟓°. Въпреки че sin 162,5° също е равно на 
0,3, от чертежа е очевидно, че 𝛽 е остър ъгъл, 
поради което този случай се отхвърля.  

 
1.2. Разстояния до Марс. Означаваме 
радиусите на земната и марсианската орбита 
съответно с 𝑟𝑒 и 𝑟𝑚. Разстоянието между 
Земята и Марс означаваме с 𝑟1 при Марс на 
90° от Слънцето и с 𝑟2 при Марс на 𝛼 = 42° от 

Слънцето. Тогава 𝑟𝑚 = √𝑟𝑒2 + 𝑟1
2 = 1,500 AU. 

По синусова теорема 
𝑟𝑒

sin𝛽
=

𝑟𝑚

sin𝛼
, т.е. sin 𝛽 =

0,446 и 𝛽 = 26,487° (от чертежа е ясно, че 𝛽 е 
остър ъгъл). Също по синусова теорема 

𝑟2

sin(180°−𝛼−𝛽)
=

𝑟𝑚

sin𝛼
, при което 𝒓𝟐 = 𝟐, 𝟎𝟖𝟔 𝐀𝐔. 

 
1.3. Комета. Разглеждаме орбитите на Земята 
и кометата в координатната система, показана 
на чертежа. Видно е, че за кометната орбита 
фокусното разстояние е 0,9 AU. 
Ексцентрицитетът на орбитата тогава е 𝑒 =
0,9 AU

2 AU
= 0,45. Използвайки, че за елипса с 

голяма полуос 𝑎, малка полуос 𝑏 и 

ексцентрицитет 𝑒 е вярно 𝑒 = √1 −
𝑏2

𝑎2
 , 

малката полуос на кометната орбита е 𝑏 =

2√1 − 0,452 AU = 1,786 AU. Ясно е, че 
кометата ще лежи на симетралата на 
отсечката Земя-Слънце. Тогава 𝑥-координатата 
й е 0,9 + 0,5 = 1,4 AU. Записваме за кометната 

орбита уравнението на елипсата (
𝑥

𝑎
)
2

+ (
𝑦

𝑏
)
2

=

1 и замествайки намерените стойности на 𝑎, 𝑏 
и 𝑥, за 𝑦-координатата на кометата се 
получава 𝑦 = 1,275 AU. Тогава по Питагорова 
теорема разстоянията от Земята до кометата и 

от Слънцето до кометата са равни на √0,52 + 1,2752 ≈ 𝟏, 𝟑𝟕 𝐀𝐔. 



2.2. Гравитация. Когато сме на разстояние 𝑟 < 𝑅 от центъра на Земята, ние сме разположени 
вътрешно за дебела черупка от Земята с вътрешен радиус 𝑟 и външен радиус 𝑅. Черупката няма 
да ни действа гравитационно. Земното ускорение ще се определя само от останалата част от 

Земята, която е разположена вътрешно за нас. Тя има обща маса 𝑀𝑠 =
4

3
𝜋𝜌𝑟3 (𝜌 – плътност), 

поради което земното ускорение се дава с 𝑔 =
𝛾𝑀𝑠

𝑟2
=
4

3
𝛾𝜋𝜌𝑟, т.е. то се увеличава с отдалечаване 

от центъра. Ако сме на разстояние 𝑟 > 𝑅 от центъра на Земята, земното ускорение се дава с 𝑔 =
𝛾𝑀

𝑟2
=
4

3
𝛾𝜋𝜌𝑅3

1

𝑟2
 (𝑀 – земна маса), т.е. то намалява с отдалечаване от центъра. Следва, че 

земното ускорение има най-голяма стойност при 𝒓 = 𝑹. 
 
2.3. Движение по елипса. Тук ще действа 
само една сила – гравитационната. В участък 
𝐴𝐶𝐵 от елиптичната орбита ъгълът 𝜃 между 
векторите на гравитационната сила и 
скоростта е остър, поради което 
гравитационната сила извършва 
положителна работа (във формулата за 
работа участва cos 𝜃), т.е. кинетичната 
енергия нараства, с което и скоростта по 
орбитата. В участък 𝐵𝐷𝐴 от орбитата 𝜃 е тъп, 
cos 𝜃 има отрицателна стойност, 
гравитационната сила извършва отрицателна 
работа и скоростта съответно намалява. От 
казаното дотук следва, че планетата ще има 
минимална скорост в т. 𝑨 и максимална 
скорост в т. 𝑩. Посоката на движение по 
орбитата не влияе на това (проверете). 
 
2.4. Пещера. Означаваме радиусите на Земята и 
пещерата съответно с 𝑅 и 𝑟, а земната плътност 
с 𝜌. Кантарът измерва тегло 𝑃 = 𝑚𝑔𝑒𝑓𝑓, където 

𝑚 е нашата маса, а 𝑔𝑒𝑓𝑓 е резултантното 

гравитационно ускорение, което ни действа. Ако 

няма пещера, 𝑔𝑒𝑓𝑓 =
𝛾𝑀

𝑅2
=
4𝜋𝛾𝜌

3𝑅2
𝑅3, където 𝑀 е 

масата на Земята. Плътността на веществото в 
пещерата е на практика нула. Затова Земята с 
пещерата ще ни действа гравитационно така, 
както биха ни действали едновременно цялата 
Земя (без пещера) и кълбо под нас с център на 
𝑅/2 от нас, имащо отрицателна плътност −𝜌 
(при “наслагване” на двете се получава точно 
Земята с пещерата). Затова в този случай 𝑔𝑒𝑓𝑓 =

𝛾𝑀

𝑅2
+ (−

4

3
𝛾𝜋𝜌𝑟3

𝑅2/4
) =

4

3
𝜋𝛾𝜌𝑅3

𝑅2
−

16

3
𝜋𝛾𝜌𝑟3

𝑅2
=
4𝜋𝛾𝜌

3𝑅2
(𝑅3 −

4𝑟3). И така, 𝑘 =
𝑚
4𝜋𝛾𝜌

3𝑅2
(𝑅3−4𝑟3)

𝑚
4𝜋𝛾𝜌

3𝑅2
𝑅3

=
𝑅3−4𝑟3

𝑅3
. Затова 𝒓 = √

𝟏−𝒌

𝟒

𝟑
𝑹. Най-голямата стойност, която 𝑟 

може да приема, е 𝑟 = 0,5𝑅 (вж. пунктира на чертежа). Тогава 
1

8
=
1−𝑘

4
 и 𝒌 = 𝟎, 𝟓 е минималната 

стойност на 𝑘 (ако е по-малка, то 𝑟 > 0,5𝑅). 
 



3.1. Възможни периоди. Орбиталният период и голямата полуос на телата около Слънцето са 

свързани с  
𝑎3[AU]

𝑇2[yr]
= 1. Вижда се, че колкото по-голяма е голямата полуос, толкова по-голям е 

орбиталният период. Но за голямата полуос е вярно 

𝑎 =
𝑟𝑎+𝑟𝑝

2
, където 𝑟𝑎 и 𝑟𝑝 са съответно афелийно и 

перихелийно разстояние. По условие 𝑟𝑎 = 20 AU. 
Затова за минимален период искаме минимално 
перихелийно разстояние и за максимален период 
искаме максимално перихелийно разстояние. 
Орбитата на спътника не трябва да влиза в Слънцето, 
т.е. минималното 𝑟𝑝 е на практика равно на слънчевия 

радиус 𝑅⊙ = 696000 km = 0,004652 AU. Тогава 
минималният орбитален период е 𝑻min = 𝟑𝟏, 𝟔𝟑 𝐲𝐫. 
Винаги 𝑟𝑝 ≤ 𝑟𝑎 (като имаме равенство при кръгова 

орбита с радиус 𝑟𝑎). Максималната голяма полуос 

тогава е 𝑎max =
𝑟𝑎+𝑟𝑎

2
= 𝑟𝑎. А максималният орбитален 

период е 𝑻max = 𝟖𝟗, 𝟒𝟒 𝐲𝐫. 
 
3.2. Радиус-вектор. а) Голямата полуос на орбитата на 
тялото е 𝑎 = 16 AU. Орбиталният му период тогава е 𝑇 =
64 yr. Използвайки, че за перихелийното разстояние 𝑟𝑝 е 

изпълнено 𝑟𝑝 = 𝑎(1 − 𝑒), ексцентрицитетът е 𝑒 = 0,969. 

Но 𝑒 = √1 −
𝑏2

𝑎2
, т.е. голямата полуос е 𝑏 = √1 − 𝑒2𝑎 =

3,97 AU. Лицето на елипсата на орбитата е 𝑆 = 𝜋𝑎𝑏 =
199,5 AU2. Вторият закон на Кеплер гласи, че за равни 
интервали от време радиус-векторът на тялото ще обира 
еднакви площи от елипсата. Тогава всяка година радиус-

векторът ще обира една и съща площ: 
𝑆

𝑇
= 𝟑, 𝟏 𝐀𝐔𝟐/𝐲𝐫.  

б) Тук се пита за колко време радиус-векторът на тялото 

ще обере незащрихованата площ на чертежа. Нейното лице е 𝑆1 =
𝜋𝑎𝑏

2
− 𝑏(𝑎 − 𝑟𝑝) = 38,2 AU

2. 

Такава площ ще се “обере” от радиус-вектора за време 𝑡 =
𝑆1
𝑆

𝑇

= 𝟏𝟐, 𝟑 𝐲𝐫. Това е значително под 

половината от орбиталния период на тялото. 
 
3.3. Изследване на екзопланета. Използваме обобщената форма на третия закон на Кеплер 
𝑎3

𝑇2
=

𝛾𝑀

4𝜋2
, замествайки 𝑎 = 3 × 106 m и 𝑇 = 5400 s. Тогава 𝑴 = 𝟓, 𝟒𝟖 × 𝟏𝟎𝟐𝟑 𝐤𝐠. Означавайки 

средната плътност на планетата с 𝜌 и нейния радиус с 𝑅, имаме 𝑀 =
4

3
𝜋𝜌𝑅3. Така за да имаме 

минимална възможна средна плътност, трябва радиусът на планетата да е максимален. Но той 
не може да е повече от радиуса на орбитата на модула, тъй като модулът трябва да обикаля 

безпроблемно около планетата. Минималната средна плътност е 𝜌min =
3𝑀

4𝜋𝑎3
= 𝟒𝟖𝟓𝟎 𝐤𝐠/𝐦𝟑. 

 
3.5. Сблъсък. Щом като диаметърът на спътника е толкова малък, от каквото и вещество да е 
изграден, неговата маса ще е пренебрежимо малка в сравнение с тази на планетата. Масата на 
планетата спрямо звездната също е пренебрежимо малка. Означаваме радиуса на орбитата на 
спътника с 𝑟𝑠 и радиуса на орбитата на планетата с 𝑟𝑝. Масата на планетата означаваме с 𝑀𝑝. 

Тогава масата на звездата ще е 𝑀𝑠𝑡 = 10
6𝑀𝑝. Когато движенията на телата спрат, спътникът ще 

пада към планетата по изродена елипса, като междувременно системата планета-спътник също 
ще пада към звездата по изродена елипса. Времето за падане по всяка от тези изродени елипси 



(𝑡𝑠, 𝑡𝑝) ще е половината от орбиталния период за тях. Тогава може да запишем 
(
𝑟𝑝

2
)
3

4𝑡𝑝
2 =

106𝛾𝑀𝑝

4𝜋2
 и 

(
𝑟𝑠
2
)
3

4𝑡𝑠
2 =

𝛾𝑀𝑝

4𝜋2
. Разделяме двата израза, при което (

𝑟𝑝

𝑟𝑠
)
3

(
𝑡𝑠

𝑡𝑝
)
2

= 106. По условие 𝑡𝑝 = 2,6𝑡𝑠. Следва, 

че 𝑟𝑝 = 189,1𝑟𝑠 = 4,92 × 10
8 km = 3,29 AU. Но 

𝑟𝑝
3[AU]

𝑇𝑝
2[yr]

= 1, където 𝑇𝑝 е орбиталният период на 

планетата, защото звездата е подобна на Слънцето. 𝑻𝒑 = 𝟓, 𝟗𝟔 𝐲𝐫. 

 
3.6. Стена. Ударът е еластичен, затова механичната енергия на системата от частици ще се 

запази. Доказахме, че механичната енергия на системата е равна на –
𝛾𝑀𝑚

2𝑎
, където 𝑀 и 𝑚 са 

съответно масите на голямата и малката частица, а 𝑎 е голямата полуос на орбитата. Ясно е, че 
след удара голямата полуос ще остане същата. Но новата орбита на леката частица е по 
изродена елипса, в единия край на която е тежката. При движението по изродена елипса 
вторият закон на Кеплер пак ще важи – нека изродената елипса има безкрайно малка по 
големина малка полуос 𝑏. Докато леката частица падне към тежката, нейният радиус-вектор ще 
трябва да обере участък от елипсата, равен на половината от този, за който стана дума в 3.2., а 

именно 
𝜋𝑎𝑏

4
−
𝑏(𝑎−𝑟𝑝)

2
. Като част от площта на цялата изродена елипса това е 

𝜋𝑎𝑏

4
−
𝑏(𝑎−𝑟𝑝)

2

𝜋𝑎𝑏
=

𝜋𝑎

4
 −
(𝑎−𝑟𝑝)

2

𝜋𝑎
. Тук 𝑏 се съкрати, а сега взимайки предвид, че 𝑟𝑝 = 0, имаме 

𝜋𝑎

4
 −
(𝑎−𝑟𝑝)

2

𝜋𝑎
=

𝜋

4
 −
1

2

𝜋
=
𝜋−2

4𝜋
. 

Голямата полуос на изродената елипса е равна на тази на началната орбита, поради което 

периодът по изродената елипса също ще е 𝑇. Времето за падане тогава ще е 
𝝅−𝟐

𝟒𝝅
𝑻 съгласно 

втория закон на Кеплер. 
 
4.2. Земната скорост. а) В единия случай ще увеличим земната скорост 𝑣 = 30 km/s  с 𝛥𝑣 =
5 km/s, а в другия случай ще я намалим с толкова. И в двата случая Земята ще тръгне по 
елиптична орбита, чиято голяма ос ще принадлежи на същата права с отсечката Земя-Слънце 
точно преди промяната на земната скорост. За точката на промяна на скоростта може да 

запишем 𝑣 = √
𝛾𝑀⊙

𝑟
 (𝑀⊙ – маса на Слънцето, 𝑟 – радиус на старата земна орбита), но също може 

да запишем 𝑣 + 𝛥𝑣 =  √𝛾𝑀⊙ (
2

𝑟
−

1

𝑎1
) за първия случай (𝑎1 е новата голяма полуос тогава) и 𝑣 −

𝛥𝑣 =  √𝛾𝑀⊙ (
2

𝑟
−

1

𝑎2
) за втория случай (𝑎2 е новата голяма полуос тогава). След пресмятания 

получаваме 𝒂𝟏 = 𝟏, 𝟔𝟏 𝐀𝐔 и 𝒂𝟐 = 𝟎, 𝟕𝟕 𝐀𝐔.  
б) За да може Земята да падне върху Слънцето, трябва перихелийното разстояние да е най-

много слънчевия радиус 𝑅⊙ = 696000 km, т.е. голямата полуос да е най-много 𝑎⊙ =
𝑟+𝑅⊙

2
. 

Тогава земната скорост трябва да се промени с поне 𝛥𝑣1, което е такова по големина, че 𝑣 −

𝛥𝑣1 = √𝛾𝑀⊙ (
2

𝑟
−

1

𝑎⊙
) (вече видяхме, че голямата полуос намалява с намалянето на земната 

скорост). За отговор се получава 𝜟𝒗𝟏 = 𝟐𝟕, 𝟏𝟑 𝐤𝐦/𝐬. 
 
4.4. Трета космическа скорост. За да напусне тялото Слънчевата система, трябва да го хвърлим 
с такава скорост 𝑣3, че след като то напусне гравитационното поле на Земята (дотогава тя ще го 
дърпа обратно и ще намаля скоростта му), скоростта му спрямо Слънцето да е равна 
параболичната скорост за разстоянието до Слънцето 𝑟, на което тялото се намира. Ще запишем 
ЗЗЕ за две точки – точката на изстрелване на тялото и точка, в която тялото е на толкова голямо 
разстояние 𝑟∞ от Земята, че тя на практика не го привлича, т.е. тялото е напуснало 

гравитационното й поле: 
𝑚𝑣3

2

2
−
𝛾𝑀𝐸𝑚

𝑅
=
𝑚𝑣∞

2

2
−
𝛾𝑀𝐸𝑚

𝑟∞
. Тук 𝑀𝐸 е маса на Земята, 𝑚 е маса на 

тялото, 𝑅 е радиус на Земята, а 𝑣∞ е скорост на тялото спрямо Земята, когато то вече е 



напуснало гравитационното й поле. Тъй като 𝑟∞ ≫ 𝑅, може да приемем 
𝛾𝑀𝐸𝑚

𝑟∞
≈ 0. Тогава се 

получава, че 𝑣∞ = √𝑣3
2 −

2𝛾𝑀𝐸

𝑅
.  𝑣∞ е скорост спрямо Земята, а не спрямо Слънцето – всъщност, 

хвърленото от Земята тяло след напускане на земното гравитационно поле има скорост спрямо 

Слънцето 𝑣∞′, равна на сбора на 𝑣∞ и земната орбитална скорост 𝑣0 = √
𝛾𝑀⊙

𝑟
, където 𝑀⊙ е 

масата на Слънцето и 𝑟 е радиусът на земната орбита. И както казахме в началото, искаме 𝑣∞′ =

√
2𝛾𝑀⊙

𝑟
 (разстоянието тяло-Слънце ще е на практика равно на разстоянието Земя-Слънце, дори и 

след като тялото е напуснало земното гравитационно поле). Тогава √𝑣3
2 −

2𝛾𝑀𝐸

𝑅
+√

𝛾𝑀⊙

𝑟
=

√
2𝛾𝑀⊙

𝑟
, т.е. √𝑣3

2 −
2𝛾𝑀𝐸

𝑅
= (√2 − 1)√

𝛾𝑀⊙

𝑟
. Това е еквивалентно на 𝑣3

2 = (√2 − 1)
2 𝛾𝑀⊙

𝑟
+
2𝛾𝑀𝐸

𝑅
, 

или 𝑣3 = √((√2 − 1)𝑣0)
2
+ 𝑣2

2, където 𝑣2 е втората космическа скорост за Земята. Заместваме 

𝑀⊙ = 2 × 10
30 kg, 𝑟 = 1,496 × 1011 m, 𝑀𝐸 = 5,972 × 10

24 kg и 𝑅 = 6,371 × 106 m, 
получавайки 𝒗𝟑 = 𝟏𝟔, 𝟔𝟕 𝐤𝐦/𝐬. Това е стойността, която се среща най-често в 
астрономическите справочници. Но тя не отчита, че Земята се върти около своята ос, като 

линейната скорост на точка от екватора е 𝑣𝑒𝑞 =
2𝜋𝑅

𝑇
= 0,46 km/s (където 𝑇 ≈ 24 h). И ако 

използваме подходящ момент, може да хвърлим тялото със скорост 𝑣3
′ = 16,21 km/s и то пак 

да напусне Слънчевата система. Но подчертаваме, че 𝑣3
′  е скорост спрямо земната повърхност, 

докато 𝑣3 e скорост спрямо Земята като цяло. 
 
4.5. Прицел. Записваме ЗЗМИ веднъж за точката на хвърляне и веднъж за перихелия, който 
всъщност ще е върхът на параболата: 𝑚𝑣𝑟 sin 45° = 𝑚𝑣𝑝𝑟𝑝 sin 90°. Тук 𝑚 е масата на трупчето, 𝑣 

е скоростта на хвърляне, 𝑟𝑝 е перихелийното разстояние, а 𝑣𝑝 e перихелийната скорост. Освен 

това, ЗЗЕ също важи, 
𝑚𝑣2

2
−
𝛾𝑀⊙𝑚

𝑟
=
𝑚𝑣𝑝

2

2
−
𝛾𝑀⊙𝑚

𝑟𝑝
. В него заместваме 𝑣𝑝

2 = 𝑣2
𝑟2

2𝑟𝑝
2 и умножаваме 

по 𝑟𝑝
2, достигайки до 

𝑣2

2
𝑟𝑝
2 −

𝛾𝑀⊙

𝑟
𝑟𝑝
2 =

𝑣2𝑟2

4
− 𝛾𝑀⊙𝑟𝑝 след съкращаване на 𝑚. Сега използваме, че 

𝑣2 =
2𝛾𝑀⊙

𝑟
, и в лявата страна остава 0. Получаваме 

𝛾𝑀⊙

2
𝑟 = 𝛾𝑀⊙𝑟𝑝 и 𝑟𝑝 =

1

2
𝑟, 𝒓𝒑 = 𝟏 𝐀𝐔. Имайки 

израза за 𝑟𝑝, връщаме се в ЗЗМИ и преобразуваме до 
√2

2
𝑣 =

𝑣𝑝

2
, 𝑣𝑝 = √2𝑣, 𝒗𝒑 = 𝟐𝟗, 𝟖𝟔 𝐤𝐦/𝐬. 

Това е орбиталната скорост на скорост на Земята в рамките на предположението, че тя се движи 

по кръгова орбита с радиус 1 AU. За случая с кръговата скорост, нека се върнем в 
𝑣2

2
𝑟𝑝
2 −

𝛾𝑀⊙

𝑟
𝑟𝑝
2 =

𝑣2𝑟2

4
− 𝛾𝑀⊙𝑟𝑝 и заместим 𝑣2 =

𝛾𝑀⊙

𝑟
, рационализирайки до квадратното уравнение 

1

2𝑟
𝑟𝑝
2 − 𝑟𝑝 +

1

4
𝑟 = 0. То има два положителни корена, (1 ± √

1

2
) 𝑟. Какъв е смисълът зад този 

отговор? Няма два варианта за перихелийно разстояние – двата корена са перихелийното и 
афелийното разстояние по орбитата на трупчето; радиус-векторът и векторът на скоростта 
сключват ъгъл 90° и в перихелия, и в афелия, т.е. още от прилагането на ЗЗМИ в задачата има 

двойнственост. И така, 𝑟𝑝 = (1 − √
1

2
) 𝑟, 𝒓𝒑 = 𝟎, 𝟐𝟗 𝐀𝐔. Заместваме обратно в ЗЗМИ, откъдето 

√2

2
𝑣 = (1 − √

1

2
)𝑣𝑝. Затова 𝑣𝑝 =

1

√2−1
𝑣, 𝒗𝒑 = 𝟓𝟎, 𝟗𝟖 𝐤𝐦/𝐬. 

 

5.5. Космическа станция. а) По третия закон на Кеплер 
(𝑅+ℎ)3

𝑇2
=
𝛾𝑀𝐸

4𝜋2
, т.е. 𝑇 = 2𝜋√

(𝑅+ℎ)3

𝛾𝑀𝐸
. Но в 

задачата се иска представяне на крайния отговор чрез основните данни. Използвайки, че 𝑔0 =



𝛾𝑀𝐸

𝑅2
 (или 𝛾𝑀𝐸 = 𝑔0𝑅

2), следва 𝑻 = 𝟐𝝅√
(𝑹+𝒉)𝟑

𝒈𝟎𝑹𝟐
. Заместваме ℎ =

4,23 × 105 m, 𝑅 = 6,37 × 106 m и 𝑔0 = 9,81 m/s
2, получавайки 𝑻 =

𝟓, 𝟓𝟖 × 𝟏𝟎𝟑 𝐬. 
б) Наблюдателят ще вижда тази част от траекторията, която е 
разположена над равнината на хоризонта. Тя представлява дъга, 

съответстваща на централен ъгъл 𝜙 = 2arccos (
𝑅

𝑅+ℎ
). Времето, за 

което станцията се намира над хоризонта, е съответно 𝑡 =
𝑇𝜙

2𝜋
= 𝟐√

(𝑹+𝒉)𝟑

𝒈𝟎𝑹𝟐
𝐚𝐫𝐜𝐜𝐨𝐬 (

𝑹

𝑹+𝒉
). За 

пояснение, тук работим с радиани (2𝜋 радиана са 360°), затова във формулата 𝜙 е в радиани и 

съответно arccos (
𝑅

𝑅+ℎ
) е в радиани. Отново заместваме с основните данни, при което 𝒕 =

𝟔𝟑𝟎 𝐬.  
в) Ъгловата скорост на станцията ще зависи само от перпендикулярната на 
зрителния лъч компонента на скоростта й по орбитата 𝑣⊥ и от 

разстоянието от нас до нея 𝑑: 𝛽 =
𝑣⊥

𝑑
. Съобразявайки по чертежа, по 

синусова теорема 
𝑑

sin𝜙
=

𝑅+ℎ

sin(180°−𝜃)
=

𝑅+ℎ

sin𝜃
=

𝑅

sin(𝜃−𝜙)
. Перпендикулярната 

компонента се дава с 𝑣⊥ = 𝑣 cos(𝜃 − 𝜙) =
2𝜋(𝑅+ℎ)

𝑇
cos(𝜃 − 𝜙). В този израз 

cos(𝜃 − 𝜙) може да се замести с √1 − sin2(𝜃 − 𝜙), а sin(𝜃 − 𝜙) =
𝑅

𝑅+ℎ
sin 𝜃. За разстоянието 𝑑 може да се запише косинусовата теорема 

(така, че да няма 𝜙 в израза): (𝑅 + ℎ)2 = 𝑑2 + 𝑅2 + 2𝑑𝑅 cos 𝜃. Тогава 𝑑 
като функция на 𝑅, ℎ и 𝜃 може да намерим, разглеждайки горното 
равенство като квадратно уравнение спрямо 𝑑. И така, след кратки 
алгебрични преобразования намираме: 

𝜷 =
𝟐𝝅√𝑹𝟐 𝐜𝐨𝐬𝟐 𝜽 + 𝟐𝑹𝒉 + 𝒉𝟐

𝑻(√𝑹𝟐 𝐜𝐨𝐬𝟐 𝜽 + 𝟐𝑹𝒉 + 𝒉𝟐 − 𝑹𝐜𝐨𝐬 𝜽)
 

г) Когато станцията е на хоризонта, 𝜃 = 90° и cos 𝜃 = 0, при което 𝛽ℎ =
2𝜋√2𝑅ℎ+ℎ2

𝑇√2𝑅ℎ+ℎ2
=
2𝜋

𝑇
. Когато 

станцията е в зенита, 𝜃 = 0° и cos 𝜃 = 1, при което 𝛽𝑧 =
2𝜋√(𝑅+ℎ)2

𝑇(√(𝑅+ℎ)2−𝑅)
=
2𝜋(𝑅+ℎ)

𝑇ℎ
. Следователно 

𝜷𝒛
𝜷𝒉
= 𝟏 +

𝑹

𝒉
 

д) Ъгловата скорост на станцията в зенита е 𝛽𝑧 =
2𝜋(𝑅+ℎ)

𝑇ℎ
= 1,8 × 10−2 rad/s. В същия момент 

ъгловата скорост на самолета спрямо наблюдателя е 𝛽1 =
𝑣1

ℎ1
= 3,0 × 10−2 rad/s. Ще изглежда, 

че самолетът ще се движи по-бързо от станцията. 
 
7.4. Граница на Рош. Преди да разгледаме случая в задачата (със Земята), нека изследваме 
общия случай. Може да приемем, че тялото на чертежа (с радиус 𝑅 и маса 𝑚, намиращо се на 
разстояние 𝑟 от създаващото приливни сили тяло с маса 𝑀) ще се разпадне поради приливните 
сили тогава, когато т. 𝐴 започне да се раздалечава от т. 𝐵 поради приливните сили.  



Наготово използваме формулата за приливно ускорение 𝑎𝑡 =
2𝛾𝑀𝑅

𝑟3
 (вж. теорията), 

заключавайки, че разликата в гравитационните ускорения за 𝐴 и 𝐵, породени от масата 𝑀, е 

2𝑎𝑡 =
4𝛾𝑀𝑅

𝑟3
. Отделно от това, 𝐴 и 𝐵 имат гравитационно ускорение, насочено към центъра на 

тялото и равно на 
𝛾𝑚

𝑅2
. Относителното ускорение на едната точка спрямо другата е 

2𝛾𝑚

𝑅2
 и когато 

2𝑎𝑡 се изравни по големина с 
2𝛾𝑚

𝑅2
, тялото ще започне да се разпада. Тогава границата на Рош се 

дава с 𝑟 = √
2𝑀

𝑚

3
𝑅. Формулата може да се запише и по друг начин. Ако означим радиуса на 

тялото с маса 𝑀 с 𝑅𝑀 , плътността му с 𝜌𝑀 и плътността на другото тяло 𝜌𝑚, то 𝑟 = √
2𝑅𝑀

3 𝜌𝑀

𝑅3𝜌𝑚

3
𝑅 =

√
2𝜌𝑀

𝜌𝑚

3
𝑅𝑀. В конкретния случай на задачата ползваме втората формула, замествайки 𝑅𝑀 =

6371 km (среден земен радиус) и 𝜌𝑀 = 5500 kg/m
3 (може да намерим тази стойност, знаейки 

земните радиус и маса). Тогава 𝒓 ≈ 𝟗𝟓𝟎𝟎 𝐤𝐦. Много от изкуствените спътници на Земята имат 
орбити с размери, значително по-малки от това. За тях границата на Рош не е проблем, тъй като 
те се задържат като едно цяло под действието не на гравитационните, а на други сили. 
Формулата за граница на Рош, която изведохме, не е съвсем точна, тъй като тя приема, че 
разпадащото се под действието на приливните сили тяло запазва сферичната си форма до 
самото разпадане. Повечето тела постепенно се деформират под действието на приливните 
сили, придобивайки елипсоидална форма (като пъпеш). За такива тела границата на Рош е по-
голяма.  
 
7.6. През тунел. Означаваме радиуса на планетата с 𝑅, масата й с 𝑀 и плътността й с 𝜌. 

Орбиталният период по кръговата орбита е 𝑇 = 2𝜋√
𝑅3

𝛾𝑀
, а времето за достигане на антипода е 

половината от него, т.е. 
𝑇

2
= 𝜋√

𝑅3

𝛾𝑀
. Когато снарядът се движи по тунела, гравитационната сила, 

която му действа, е равна на 𝐹 =
4

3
𝛾𝜋𝜌𝑚𝑟, където 𝑟 е разстоянието между снаряда и центъра на 

Земята, а 𝑚 е масата на снаряда (вж. 2.2.). Тъй като 𝐹 е пропорционално на 𝑟, при движението 
си снарядът ще извършва хармонични осцилации, като равновесното му положение ще е при 

центъра на Земята, а коефициентът на еластичност ще е 𝑘 =
4

3
𝛾𝜋𝜌𝑚. Периодът на осцилациите 

се задава с 𝑡 = 2𝜋√
𝑚

𝑘
, т.е. снарядът достига антипода за време 

𝑡

2
= 𝜋√

𝑚
4

3
𝛾𝜋𝜌𝑚

= 𝜋√
1

4

3
𝛾𝜋𝜌

. Обаче 

4

3
𝜋𝜌 =

𝑀

𝑅3
, при което 𝜋√

1
4

3
𝛾𝜋𝜌

= 𝜋√
𝑅3

𝛾𝑀
 . Така 

𝑇

2
=
𝑡

2
 , което трябваше да се докаже. 

 
7.7. Звездно трио. На чертежа са показани за една от 
звездите гравитационните сили, които й действат. 
Перпендикулярните на правата звезда-ЦМ компоненти 
на силите се елиминират, а сборът от компонентите на 

силите по правата е равен на 
2𝛾𝑀2 cos30°

𝐿2
=
√3𝛾𝑀2

𝐿2
. 

Дължината на височина в равностранния триъгълник е 

равна на √𝐿2 − (
𝐿

2
)
2

=
√3

2
𝐿. Центърът на масите е и 

медицентър в триъгълника, поради което разстоянието 

от него до всяка от звездите е 
2

3
(
√3

2
𝐿) =

√3

3
𝐿. От това 

следва, че 
√3𝛾𝑀2

𝐿2
=
√3

3
𝑀𝜔2𝐿, т.е. 𝜔 = √

3𝛾𝑀

𝐿3
. Но 𝜔 =

2𝜋

𝑇
, поради което 𝑻 = 𝟐𝝅√

𝑳𝟑

𝟑𝜸𝑴
. 

 



7.10. Точки на Лагранж. а) Двете тела се движат около центъра на 
масите, който е неподвижен. Затова правата през двете тела винаги 
минава и през центъра на масите, т.е. ъгловите скорости на двете тела са 

равни (в случая на 𝜔). Тогава 
𝛾𝑀1𝑀2

𝑑2
= 𝑀1𝜔

2𝑎1 = 𝑀2𝜔
2𝑎2. От това може 

да извлечем 𝑀1𝑎1 = 𝑀2𝑎2, откъдето 𝑎1 =
𝑀2

𝑀1
𝑎2 и 𝑎2 =

𝑀1

𝑀2
𝑎1 . Но 𝑎1 +

𝑎2 = 𝑑, така че 𝒂𝟏 =
𝑴𝟐

𝑴𝟏+𝑴𝟐
𝒅 и 𝒂𝟐 =

𝑴𝟏

𝑴𝟏+𝑴𝟐
𝒅.  

б) Заместваме 𝑎1 =
𝑀2

𝑀1+𝑀2
𝑑 в 

𝛾𝑀1𝑀2

𝑑2
= 𝑀1𝜔

2𝑎1, откъдето 𝝎 = √
𝜸(𝑴𝟏+𝑴𝟐)

𝒅𝟑
.  

в) За да остане тялото неподвижно спрямо звездата и планетата, ъгловата му скорост спрямо 
центъра на масите трябва да е равна на тяхната. Резултантното гравитационно ускорение, което 
му действа, е равно на центростремителното. Нека разгледаме къде може да стоят точките на 
Лагранж по правата планета-звезда. Обособяват се три случая – точка между планетата и 
звездата, точка по лъча 𝑀1𝑀2

→ след 𝑀2 и точка по лъча 𝑀2𝑀1
→ след 𝑀1.  

I) Точка между планетата и звездата (т.нар. точка L1). Резултантното гравитационно ускорение е 

равно на 
𝛾𝑀1

(𝑑−𝑥1)2
−
𝛾𝑀2

𝑥1
2  (векторите на гравитационните ускорения, създавани от планетата и 

звездата върху тялото с маса 𝑚, имат противоложни посоки). Тогава 
𝛾𝑀1

(𝑑−𝑥1)2
−
𝛾𝑀2

𝑥1
2 =

𝜔2(𝑎2 − 𝑥1) =
𝛾(𝑀1+𝑀2)

𝑑3
(𝑎2 − 𝑥1) =

𝛾𝑀1

𝑑2
−
𝛾(𝑀1+𝑀2)

𝑑3
𝑥1. Ако решим да привеждаме към общ 

знаменател, полученото уравнение спрямо 𝑥1 ще е от пета степен, което прави аналитичното му 
решаване на практика невъзможно. Вместо това ще се възползваме от казаното ни в условието 
𝑥𝑖 ≪ 𝑎2, според което и 𝑥𝑖 ≪ 𝑑. Това означава, че може в  

𝑀1
(𝑑 − 𝑥1)2

−
𝑀2

𝑥1
2 =

𝑀1
𝑑2
−
𝑀1 +𝑀2
𝑑3

𝑥1⟺
𝑀1

(𝑑 (1 −
𝑥1
𝑑
))
2 −

𝑀2

𝑥1
2 =

𝑀1
𝑑2
−
𝑀1 +𝑀2
𝑑3

𝑥1⟺ 

⟺
𝑀1
𝑑2
(1 −

𝑥1
𝑑
)
−2

−
𝑀2

𝑥1
2 =

𝑀1
𝑑2
−
𝑀1 +𝑀2
𝑑3

𝑥1 

да използваме биномното приближение (според което (1 + 𝑥)𝑛 ≈ 1 + 𝑛𝑥 за 𝑥 близки до 0), 
достигайки до 

𝑀1
𝑑2
(1 + 2

𝑥1
𝑑
) −

𝑀2

𝑥1
2 =

𝑀1
𝑑2
−
𝑀1 +𝑀2
𝑑3

𝑥1 

Изразът се рационализира до 
(3𝑀1+𝑀2)𝑥1

𝑑3
=
𝑀2

𝑥1
2 , откъдето 𝑥1 = √

𝑀2

3𝑀1+𝑀2

3
𝑑. По условие 𝑀2 ≪ 𝑀1, 

откъдето следва 𝒙𝟏 = √
𝑴𝟐

𝟑𝑴𝟏

𝟑
𝒅. 

II) Точка по лъча 𝑀1𝑀2
→ след 𝑀2 (т.нар. точка L2). Резултантното гравитационно ускорение е 

𝛾𝑀1

(𝑑+𝑥2)2
+
𝛾𝑀2

𝑥2
2 , при което 

𝛾𝑀1

(𝑑+𝑥2)2
+
𝛾𝑀2

𝑥2
2 = 𝜔

2(𝑎2 + 𝑥2) =
𝛾(𝑀1+𝑀2)

𝑑3
(𝑎2 + 𝑥2) =

𝛾𝑀1

𝑑2
+
𝛾(𝑀1+𝑀2)

𝑑3
𝑥2.  

В  
𝑀1

𝑑2
(1 +

𝑥2

𝑑
)
−2

+
𝑀2

𝑥2
2 =

𝑀1

𝑑2
+
𝑀1+𝑀2

𝑑3
𝑥2 използваме биномното приближение и изразът се 

преобразува до 
(3𝑀1+𝑀2)𝑥2

𝑑3
=
𝑀2

𝑥2
2 , откъдето 𝒙𝟐 = √

𝑴𝟐

𝟑𝑴𝟏

𝟑
𝒅, т.е. на практика 𝑥1 = 𝑥2.  

III) Точка по лъча 𝑀2𝑀1
→ след 𝑀1 (т.нар. точка L3). Резултантното гравитационно ускорение е 

𝛾𝑀1

(𝑎2+𝑥3−𝑎1)2
+

𝛾𝑀2

(2𝑎2+𝑥3)2
. Тогава 

𝛾𝑀1

(𝑎2+𝑥3−𝑎1)2
+

𝛾𝑀2

(2𝑎2+𝑥3)2
= 𝜔2(𝑎2 + 𝑥3) =

𝛾(𝑀1+𝑀2)

𝑑3
(𝑎2 + 𝑥3) =

𝛾𝑀1

𝑑2
+

𝛾(𝑀1+𝑀2)

𝑑3
𝑥3. Съответно 

𝑀1
(𝑎2 − 𝑎1)2

(1 +
𝑥3

𝑎2 − 𝑎1
)
−2

+
𝑀2

4𝑎2
2 (1 +

𝑥3
2𝑎2

)
−2

=
𝑀1
𝑑2
+
𝑀1 +𝑀2
𝑑3

𝑥3 

И след биномното приближение 
𝑀1

(𝑎2 − 𝑎1)2
(1 − 2

𝑥3
𝑎2 − 𝑎1

) +
𝑀2

4𝑎2
2 (1 − 2

𝑥3
2𝑎2

) =
𝑀1
𝑑2
+
𝑀1 +𝑀2
𝑑3

𝑥3 



Вижда се, че рационализирането на това ще тежи, но няма как. 
𝑀1(𝑀1 +𝑀2)

2

(𝑀1 −𝑀2)
2𝑑2

(1 − 2
(𝑀1 +𝑀2)𝑥3
(𝑀1 −𝑀2)𝑑

) +
𝑀2(𝑀1 +𝑀2)

2

4𝑀1
2𝑑2

(1 −
(𝑀1 +𝑀2)𝑥3

𝑀1𝑑
) =

𝑀1
𝑑2
+
𝑀1 +𝑀2
𝑑3

𝑥3 

𝑀1
3 (1 +

𝑀2
𝑀1
)
2

(1 −
𝑀2
𝑀1
)
−2

𝑀1
2𝑑2

(1 − 2
(𝑀1 +𝑀2)𝑥3
(𝑀1 −𝑀2)𝑑

) +
𝑀2𝑀1

2 (1 +
𝑀2
𝑀1
)
2

4𝑀1
2𝑑2

(1 −
(𝑀1 +𝑀2)𝑥3

𝑀1𝑑
) =

𝑀1
𝑑2
+
𝑀1 +𝑀2
𝑑3

𝑥3 

𝑀1 (1 + 2
𝑀2
𝑀1
)
2

𝑑2
(1 − 2

(𝑀1 +𝑀2)𝑥3
(𝑀1 −𝑀2)𝑑

) +
𝑀2 (1 + 2

𝑀2
𝑀1
)

4𝑑2
(1 −

(𝑀1 +𝑀2)𝑥3
𝑀1𝑑

) =
𝑀1
𝑑2
+
𝑀1 +𝑀2
𝑑3

𝑥3 

𝑀1 (1 +
4𝑀2
𝑀1
) (1 − 2

(𝑀1 +𝑀2)𝑥3
(𝑀1 −𝑀2)𝑑

) +
𝑀2 (1 + 2

𝑀2
𝑀1
)

4
(1 −

(𝑀1 +𝑀2)𝑥3
𝑀1𝑑

) = 𝑀1 +
𝑀1 +𝑀2

𝑑
𝑥3 

𝑀1 + 4𝑀2 − 2
(𝑀1 + 4𝑀2)(𝑀1 +𝑀2)𝑥3

(𝑀1 −𝑀2)𝑑
+
𝑀2
4
+
𝑀2
2

2𝑀1
−
𝑀2 (1 + 2

𝑀2
𝑀1
) (𝑀1 +𝑀2)𝑥3

4𝑀1𝑑
= 𝑀1 +

𝑀1 +𝑀2
𝑑

𝑥3 

17

4
𝑀2 +

𝑀2
2

2𝑀1
= (𝑀1 +𝑀2 +

𝑀2 (1 + 2
𝑀2
𝑀1
) (𝑀1 +𝑀2)

4𝑀1
+
2(𝑀1 + 4𝑀2)(𝑀1 +𝑀2)

𝑀1 −𝑀2
)
𝑥3
𝑑
  

Полагаме 
𝑀2

𝑀1
= 𝛼: 

17

4
𝛼𝑀1 +

𝛼2𝑀1
2

= ((𝛼 + 1)𝑀1 +
𝛼(1 + 2𝛼)(𝛼 + 1)

4
𝑀1 +

2(1 + 4𝛼)(1 + 𝑎)

(1 − 𝛼)
𝑀1)

𝑥3
𝑑
  

17

4
𝛼 +

𝛼2

2
= (𝛼 + 1 +

𝛼(1 + 2𝛼)(1 + 𝛼)

4
+
2(1 + 4𝛼)(1 + 𝑎)

(1 − 𝛼)
)
𝑥3
𝑑
  

Тъй като 𝛼 ≪ 1, използваме 𝛼2 ≪ 𝛼 ⟹ 𝛼2 ≈ 0, 
𝛼(1+2𝛼)(1+𝛼)

4
≪

2(1+4𝛼)(1+𝑎)

(1−𝛼)
, 1 + 𝛼 ≈ 1, 1 − 𝛼 ≈ 1 

и 1 + 4𝛼 ≈ 1, за да достигнем до 
17

4
𝛼 = 3

𝑥3

𝑑
, получавайки накрая 𝒙𝟑 =

𝟏𝟕𝑴𝟐

𝟏𝟐𝑴𝟏
𝒅. 

г) Получаваме 𝒙𝟏 = 𝒙𝟐 = 𝟏, 𝟓 × 𝟏𝟎
𝟔 𝐤𝐦.  

Точката на Лагранж L3, както е ясно от аналитичния 
израз, е на практика на разстояние 𝑎2 от ЦМ и съответно 

на разстояние 𝑎2 − 𝑎1 =
𝑀1−𝑀2

𝑀1+𝑀2
𝑑 от Слънцето. 

 
Тук е моментът да споменем, че другите две точки на 
Лагранж (L4 и L5) лежат в орбиталната равнина на двете 
тела, образувайки равностранен триъгълник с тях – по 
дефиниция L4 е пред малкото тяло по орбитата му, а L5 е 
зад него. Точките L1, L2 и L3 са точки на нестабилно 
равновесие, т.е. ако отклоним от тях тяло, намиращо се в 
една от тях, дори и незначително, то евентуално ще 
стане спътник или на по-масивното, или на по-
маломасивното тяло (обектите, които са спътници на дадено тяло X, а не на друго Y, са 
ограничени до неговата сфера на Хил, имаща радиус, равен на разстоянието от X до L1 и L2 за 
системата X-Y; ако някой спътник на X напусне сферата на Хил за X, той вече влиза в сферата на 
гравитационно влияние на Y, евентуално ставайки спътник на Y). За разлика от L1, L2 и L3, 
точките L4 и L5 са точки на стабилно равновесие; ако обект в тях се отклони малко, той ще 
изпитва връщаща сила, която ще го задържа в областта на точките. Именно затова около 
точките L4 и L5 на системата Юпитер-Слънце са разположени изключително много (от порядъка 
на няколко милиона) астероиди, наречени троянци. 
 
11.9. Час на изгрев на Слънцето*. Първо ще решим задачата без да отчитаме уравнението на 
времето. Тогава Слънцето ще се движи равномерно по еклиптиката и на 4 май еклиптичната му 



дължина 𝜆 е равна на 
360°

365,2422 d
× 44 =

43,37° (44 са дните от 21 март, 
обичайната дата на пролетното 
равноденствие, до 4 май). Както 
показахме в 9.1., връзката между 
еклиптичната дължина на Слънцето 𝜆, 
деклинацията на Слънцето 𝛿 и 
наклона на земната ос 𝜀 е sin 𝛿 =
sin 𝜀 sin 𝜆. Деклинацията на Слънцето 
на 4 май е 𝛿 = 15,89°.   
 
На дадения чертеж на небесната 
сфера за Стара Загора са използвани 
стандартните означения. Отделно от 
тях, 𝐴𝐴′ е денонощният паралел на 
Слънцето на 4 май (пренебрегваме 
движението му по еклиптиката в 
рамките на един ден), а 𝐵 и 𝐵′ са 
съответно точките на изгрев и залез 
на Слънцето. Да построим вертикален 
кръг и меридиан през B и да 
разгледаме получения сферичен 
триъгълник 𝑃𝐵𝑍. Мерките на страните 𝑃𝐵, 𝑃𝑍 и 𝐵𝑍 са съответно 90° − 𝛿 = 74,11°, 90° − 𝜑 =
47,57° и 90°. Означавайки ъгъл 𝐵𝑃𝑍 с 𝛾, по косинусова теорема cos 90° = sin 𝛿 sin 𝜑 +
cos 𝛿 cos𝜑 cos 𝛾. Така cos 𝛾 = − tg𝛿 tg𝜑 и 𝛾 = 105,08° ⇔ 7 h 00 m 19 s . От това следва, че 
центърът на слънчевия диск ще се подаде на хоризонта точно 7 h 19 s преди той да кулминира, 
не отчитайки рефракция. Кулминацията ще става в 12:00 по местно слънчево време, но Стара 
Загора не лежи на централния меридиан на часовия пояс, в който се намира (𝜆 ∈ [22,5°; 37,5°]) 
а по на запад от него (разликата между тях е 30° − 25,65° = 4,35° ⇔ 17,4 m). Следователно в 
Стара Загора Слънцето кулминира в 12 h 17 m 24 s по поясно време – ако нямаше лятно 
слънчево време! Четвърти май попада в периода от последната неделя на март до последната 
неделя на октомври, поради което при кулминация на Слънцето часовниците на старозагорци 
ще показват 13 h 17 m 24 s. И така, ако нямаше рефракция, центърът на слънчевия диск щеше да 
се подаде на хоризонта тогава, когато часовниците 
показват 6 h 17 m 05 s.  
 
А сега да отчетем размерите на слънчевия диск и 
рефракцията. Поради тези фактори Слънцето ще изгрява 
съвсем малко по-рано, поради което може да не 
работим със сферична тригонометрия и да използваме 
планиметрично приближение (т.е. ще ползваме 
Евклидова геометрия). Слънчевият диск ще се види за 

първи път, когато неговият център реално е на ъгъл 
𝛿

2
+ 𝜃 

под хоризонта, където  
𝛿

2
= 16′ е средният ъглов радиус 

на Слънцето, а 𝜃 = 35′ е рефракцията на хоризонта. Така 
между изчисления преди малко от нас изгрев в 6 h 17 m 
05 s и “истинския” такъв Слънцето трябва да измине по 

небето ъгъл 𝑙 =
𝛿/2+𝜃

sin𝜑
= 75,6′. Това съответства на време 

𝑙/ cos𝛿

360°
24 ℎ = 5 m 14 s. Затова Слънцето изгрява в 6 h 11 m 51 s. Дотук разсъждавахме за средно 

Слънце, а не истинско. По графиката в 11.5. измерваме, че на 4 май часовникът е по-бавен с 



около 3 минути и 10 секунди. Затова изгревът на истинското Слънце става в 6 h 08 m 41 s. Но тъй 
като измерванията по графиките ще са сравнително неточни, по-правилно е като отговор да 
оставим 6 h 09 m. И справката с Интернет показва ☺: 

 

12.3. Относно фазите. Ще докажем, че за външна планета фазовият 
ъгъл винаги е остър. Разглеждаме орбитите на Земята (точка 𝐴 на 
чертежа) и на произволна външна планета (т. 𝐵) около Слънцето (т. 
𝑂). Нека 𝐴𝑂 пресича орбитата на външната планета в т. 𝑀 и т. 𝑁. 
Тогава ∢𝑁𝐵𝑀 = 90°, но непременно ∢𝑂𝐵𝐴 < ∢𝑁𝐵𝑀, т.е. ∢𝑂𝐵𝐴 <

90°. Връзката между фазов ъгъл 𝜓 и фаза 𝑓 е 𝑓 =
1+cos𝜓

2
. В случая 

𝜓 ∈ (0°; 90°) и cos𝜓 > 0. Затова 𝑓 > 0,5. Сега показваме, че 
минимална фаза се достига в квадратура. Означаваме ∢𝑂𝐴𝐵 ⇔ 𝛽, 

𝑂𝐴 ⇔ 𝑟1 и 𝑂𝐵 ⇔ 𝑟2. Записваме 
𝑟1

sin𝜓
=

𝑟2

sin𝛽
, т.е. sin𝜓 =

𝑟1

𝑟2
sin 𝛽.  

Взимайки предвид, че 𝜓 ∈ (0°; 90°) и съответно cos𝜓 ∈ (0; 1), 
фазата е най-малка, когато cos𝜓 е възможно най-малък, т.е. sin𝜓 е 
възможно най-голям (защото sin2𝜓 + cos2 𝜓 = 1). Но sin𝜓 е най-
голям, когато sin 𝛽 е най-голям. Максималната стойност на sin 𝛽 е 1 и се достига при 𝛽 = 90°, 
което е квадратура. 
 
13.7. Мурманска комета. За да решим изцяло задачата, първо трябва да се досетим защо 
кометата се движи по описания начин. Отклонението на кометата от центъра на спиралата в 
даден момент всъщност представлява паралакс. Необичайното е, че този паралакс постоянно се 
увеличава, т.е. кометата се приближава към нас. Щом центърът на спиралата не променя 
мястото си по небето, кометата се движи точно по правата през центъра на Слънцето, 
перпендикулярна на еклиптиката. Затова центърът на спиралата е в някой от еклиптичните 
полюси. 
а) Тъй като се наблюдава пълно лунно затъмнение, Луната е във възел и в пълнолуние, т.е. лежи 
на еклиптиката, на 180° от Слънцето. И щом е местна полунощ, Слънцето е в долна кулминация 
– затова Луната е в горна кулминация, на юг. Центърът на спиралата на кометата е на същата 
височина като Луната, но на север. Самата комета не е много далеч от него по небето. Опашката 
на кометата е насочена по направление Слънце-комета. И знаейки, че Слънцето, също както 
центъра на спиралата, е на север, опашката на кометата сочи приблизително на юг. 
б) Височината на северния небесен полюс за Мурманск е ℎ𝑃 = 𝜑 = 68,5°. Северният 
еклиптичен полюс е винаги на 23,5° от северния небесен, т.е. за Мурманск той е незалязващ, а 
съответно южният еклиптичен полюс е неизгряващ, винаги дълбоко под хоризонта. Щом 
кометата се вижда на небето, центърът на спиралата съвпада именно със северния еклиптичен 
полюс. По същата причина, поради която звездите с положителна еклиптична ширина описват 
паралактичните си елипси по часовниковата стрелка, а тези с отрицателна – обратно на 
часовниковата стрелка, спиралата ще се развива по часовниковата стрелка. 
в) Луната е на еклиптиката, а центърът на спиралата е на еклиптичния полюс, т.е. ъгловото 
разстояние между тях е 90°. Височините им по условие са равни, при което те са 45°. 
Височината на Луната в горна кулминация, когато тя има деклинация 𝛿, се дава с ℎ = 90° − 𝜑 +
𝛿. В случая 45° = 21,5° + 𝛿. Така деклинацията на Луната е 𝛿 = 23,5° и тогава тази на Слънцето 
е 𝛿′ = −𝛿 = −23,5° = −𝜀. Такава деклинация Слънцето има в деня на зимно слънцестоене – 22 



декември. Разбира се, данните, с които работим, са с точност само до първия знак след 
десетичната запетая, поради което е правилно да се каже, че картината в задачата се 
наблюдава около 22 декември. Луната е в това съзвездие, в което е Слънцето около 22 юни. 
Около тази дата то е в Бик или Близнаци. 

 
 
15.13. Слънчеви платна и двигатели на Бъсард*. а) Подемната сила 𝐹𝑐, която фотоните ще 

оказват на всяко от платната, е 𝐹𝑐 =
𝐿⊙𝑆

2𝜋𝑐𝑟2
, където сме приели платната за огледални (𝐿⊙ е 

слънчевата светимост, 𝑟 е разстоянието до Слънцето). Резултантната сила, действаща на 

платната, е 𝐹 = 𝐹𝑔 − 𝐹𝑐 =
𝛾𝑀⊙𝑚

𝑟2
−

𝐿⊙𝑆

2𝜋𝑐𝑟2
=

1

𝑟2
(𝛾𝑀⊙𝑚 −

𝐿⊙𝑆

2𝜋𝑐
), където 𝐹𝑔 е гравитационната сила, а 

𝑀⊙ е слънчевата маса. Резултантната сила е пропорционална на 𝑟−2 и затова може да си 
представим, че платната се движат в гравитационното поле на хипотетично “олекнало” Слънце 

с маса 𝑀′, т.е. 𝐹 =
𝛾𝑀′𝑚

𝑟2
. Тогава 𝑀′ = 𝑀⊙ −

𝐿⊙𝑆

2𝜋𝛾𝑚𝑐
 , откъдето намираме 𝑀′ = −3,04𝑀⊙. Сега 

използвайки тази маса, записваме закона за запазване на енергията за началния момент от 
полета и за момент, в който платното е на достатъчно голямо разстояние от Слънцето 𝑟1: 

0

2
−
𝛾𝑀′𝑚

𝑅⊙
=
𝑚𝑣1

2

2
−
𝛾𝑀′𝑚

𝑟1
 

В равенството 𝑟1 → ∞, а 𝑣1 е скоростта на достатъчно голямо разстояние от Слънцето. За нея 
получаваме  

𝒗𝟏 = √−
𝟐𝜸𝑴′

𝑹
≈ 𝟏𝟎𝟖𝟎 𝐤𝐦/𝐬 

Тъй като междузведните разстояния са много по-големи от разстоянието, на което Слънцето ще 
оказва значимо влияние върху платната, може да приемем, че те се ускоряват почти 
моментално до тази гранична скорост. На платната би действала сила на съпротивление от 
междузвездната среда, ако равнината им беше разположена перпендикулярно на 
направлението на движение. Но след началното ускоряване платната могат да се завъртят, така 



че равнината им да е разположена успоредно на това направление, при което силата на 
съпротивление ще се сведе до нула, т.к. са много тънки. 
б) Тъй като корабите с двигателите на Бъсард биват изстреляни на достатъчно голямо 
разстояние от Слънцето (около Нептун), може да пренебрегнем гравитационната сила на 
Слънцето. 
За време ∆𝑡 електромагнитното поле обира обем Δ𝑉 = 𝑆′𝑣Δ𝑡, където 𝑣 е моментната скорост на 
кораба, а 𝑆′ = 𝜋𝑅2 е сечението на полето. В този обем се съдържат ∆𝑁 = Δ𝑉𝑛 атоми. Затова 

темпът на събиране на атоми (броят събрани атоми за единица време) се задава с 
Δ𝑁

Δ𝑡
=
Δ𝑉𝑛

Δ𝑡
=

𝜋𝑅2𝑣𝑛Δ𝑡

Δ𝑡
= 𝜋𝑅2𝑣𝑛.  

Сега ще изразим подемната сила за двигател на Бъсард. На кораба действат две сили – сила на 
триене от средата и подемна сила от лазерите. Отново, нека за време ∆𝑡 полето събира Δ𝑁 
атома. Спрямо кораба тези атоми ще имат скорост −𝑣, пренебрегвайки скоростта на 
междузвездния газ спрямо Слънцето. Затова когато корабът събере Δ𝑁 атома, това води до 
промяна в импулса на кораба ∆𝑝 = −𝑣𝑚𝑝∆𝑁 (𝑚𝑝 е масата на протона). Приемаме, че всички 

събрани атоми впоследствие участват в CNO-цикъла. Нека да обърнем внимание, че по условие 
скоростта на CNO-цикъла може да се регулира, поради което с увеличаването на 𝑣 не е нужно 
общият брой на атомите в камерата за синтез да се увеличава. Освободената енергия на всеки 

∆𝑁 атома е Δ𝐸 =
∆𝑁

4
× 26,8 MeV. И от връзката между енергия и импулс на фотон 𝐸ph = 𝑝ph𝑐 е 

видно, че освободената енергия под формата на фотони ще създава обща подемна сила 𝐹ph =
Δ𝐸

𝑐Δ𝑡
. Тогава резултантната сила, действаща върху кораба, ще се задава с 𝐹tot = 𝐹ph +

Δ𝑝

Δ𝑡
=

Δ𝑁

Δ𝑡
(
26,8 Me𝑉

4𝑐
− 𝑣𝑚𝑝) = 𝜋𝑅

2𝑣𝑛𝑚𝑝 (
6,7 Me𝑉

𝑚𝑝𝑐
− 𝑣). Тази резултантна сила е неотрицателна и е ясно, 

че 𝑣 няма да може да надвиши стойността 
6,7 Me𝑉

𝑚𝑝𝑐
. Максималната скорост на двигател на Бъсард 

съответно е 𝒗max =
𝟔,𝟕 𝐌𝐞𝑽

𝒎𝒑𝒄
≈ 𝟐𝟏𝟒𝟎 𝐤𝐦/𝐬. Моментното ускорение на кораба се дава с 𝑎 =

𝐹tot

𝑀
=

𝜋𝑅2𝑣𝑛
𝑚𝑝

𝑀
(
6,7 Me𝑉

𝑚𝑝𝑐
− 𝑣). За да намерим началното ускорение 𝑎0, заместваме в израза за 

моментно ускорение 𝑣 = 𝑣0 = 100 km/s , при което 𝒂𝟎 = 𝝅𝑹
𝟐𝒗𝟎𝒏

𝒎𝒑

𝑴
(
𝟔,𝟕 𝐌𝐞𝑽

𝒎𝒑𝒄
− 𝒗𝟎) =

𝟏, 𝟎𝟖 × 𝟏𝟎−𝟓 𝐦/𝐬𝟐. 
в) Движението на слънчевите платна ще става с практически постоянна скорост, но това не е 
така при двигателите на Бъсард. Тъй като ускорението е квадратна функия на скоростта, най-
удобният начин да решим задачата е като разложим движението на поредица 
равноускорителни движения в малки интервали от време. За целта ще използваме следния 
модел – ще разделим скоростта на корабите с двигател на Бъсард на стъпки от по 200 km/s. 
Тези стъпки са интервали от 100 km/s до 300 km/s, после от 300 km/s до 500 km/s и т.н. За 
всяка стъпка ще вземем средно ускорение, което съответсва на моментното такова в средата на 
интервала. Например, за първата стъпка ще имаме средна скорост 200 km/s, за която 
съответстващото моментно ускорение е 2,04 × 10−5 m/s2. За първата стъпка ще разделим 
промяната на скоростта от 300 − 100 = 200 km/s  на това ускорение и ще получим с 
достатъчна точност времето, през което корабът се е намирал в тази стъпка. Накрая ще 
умножим това време по същата тази средна скорост (за първия интервал 200 km/s), за да 
получим оценка за изминатото разстояние. Така съставяме следната таблица: 

средна скорост [km/s] ускорение [10−5m/s2] време [yr] разстояние [pc] 

200 2,04 312 0,060 

400 3,66 174 0,070 

600 4,86 130 0,080 

800 5,64 112 0,095 

1000 5,94 107 0,115 



1200 5,88 108 0,135 

1400 5,40 118 0,175 

1600 4,50 141 0,235 

1800 3,12 204 0,385 

2000 1,38 461 → ∞ 0,965 → ∞ 

 
За дадена звезда първо изчисляваме за какво време ще пристигнат платната, тъй като те се 
движат с постоянна скорост. След това гледаме таблицата и започвайки от най-малката средна 
скорост, добавяме времената за изминатите разстояния, докато времето не се изравни с това на 
платната. Тъй като времената не се допълват докрай с времето за платната, за последното 
време от таблицата ще използваме пропорция. Вместо времето 𝑇𝑛 в таблицата, ще вземем 
времето  𝑇𝑛′, което да допълва времето на платната (𝑇𝑛′ +  ∑ 𝑇𝑖

𝑛−1
1 = 𝑇платна), а вместо 

разстоянието 𝐿 в таблицата, ще добавим разстоянието 𝐿𝑛
′ = 𝐿𝑛

𝑇’

𝑇
. Тогава ще сравним 

полученият сбор от разстоянията (𝐿кораб = 𝐿𝑛
′ + ∑ 𝐿𝑖

𝑛−1
1 ) с разстоянието до звездата. Ако 

разстоянието до звездата е по-голямо, то платната ще пристигнат първи. В противен случай 
корабът ще пристигне първи. 

По тази процедура се пресмята, че платната ще достигнат първи до 𝛂 𝐂𝐞𝐧 𝐀, но корабите с 
двигателите на Бъсард ще достигнат първи до 𝛂 𝐂𝐌𝐚 и 𝛂 𝐂𝐌𝐢. Може да направим 
заключението, че платната са по-ефективни на близки разстояния, защото много бързо достигат 
максималната си скорост, докато двигателите на Бъсард са ефективни на големи разстояния. 
Огромен недостатък на двигателите на Бъсард, обаче, е ограничението в максималната им 
скорост, което не зависи от параметрите на кораба. Ако успеем да направим платна, които да 
превишат тази скорост, то тогава те винаги ще са по-бърз способ за междузвездни пътувания. 

15.14. Земен климат*. а) Ще разсъждаваме за едно от двете огледала, напр. това в L4. За да 
може отразената от огледалото слънчева светлина да попада на Земята, трябва ъгълът на 
падане на лъчите да е равен на 30° или много близък до това.  Можем да си представим, че 
светлината не идва от Слънцето, а от неговия недействителен образ в плоското огледало. 
Образът ще е със същия “радиус” като Слънцето, но ще се намира на разстояние 2𝑟 от Земята. 
Ъгловият му радиус 𝜃⊙′ ще е два пъти по-малък от слънчевия, а ъгловата му площ ще е четири 
пъти по-малка от тази на слънчевия диск. За земния наблюдател огледалото е окръжност, която 
се проектира като елипса на небето. Голямата полуос на елипсата 𝜃𝑎 съответства на линеен 
размер 𝑅, а малката полуос 𝜃𝑏 съответства на линеен размер 𝑅 cos 30°. Колкото по-голям е 𝑅, 
толкова по-големи са ъгловите размери на огледалото. За слънчевия образ и огледалото се 
разграничават три отделни случая – 𝜃𝑏 < 𝜃𝑎 < 𝜃⊙′ (I), 𝜃𝑏 < 𝜃⊙′ < 𝜃𝑎 (II) и 𝜃𝑏 < 𝜃𝑎 < 𝜃⊙′ (III).  

 



Огледалото може да се разглежда като дупка, през която минава светлината от образа. 

Обичайната осветеност от образа (ако нямаше дупка) би била 
𝐿

4𝜋(2𝑟)2
.  Каква част от тази 

осветеност реално се получава на Земята зависи от частта от ъгловата площ на образа на 

Слънцето, видима в дупката. В случай (I) осветеността от образа е 
𝐿

4𝜋(2𝑟)2
×
𝜋𝜃𝑎𝜃𝑏

𝜋𝜃⊙
′2 =

𝐿

4𝜋(2𝑟)2
×

𝜋(𝑅/𝑟)(𝑅 cos30°/𝑟)

𝜋(𝑅⊙/2𝑟)
2 =

𝐿

4𝜋𝑟2
× (

𝑅

𝑅⊙
)
2

cos 30°. Пълната Луна е стотици хиляди пъти по-слаба от 

Слънцето на небето, така че ще в тази подточка ще разглеждаме именно случай (I) (случаите (II) 
и (III) очевидно дават осветености от образа, сравними с осветеността от Слънцето). Звездната 
величина на Луната в пълнолуние е средно 𝑚ℂ = −12,74

m, а звездната величина на Слънцето е 
𝑚⊙ = −26,74

m. По формулата на Погсън намираме търсеното 𝑅: 

𝑚ℂ −𝑚⊙ = −2,5 lg

(

 

𝐿
4𝜋𝑟2

× (
𝑅
𝑅⊙
)
2

cos 30°

𝐿
4𝜋𝑟2 )

 = −2,5 lg ((
𝑅

𝑅⊙
)

2

cos 30°) 

Получаваме 𝑹 ≈ 𝟏𝟐𝟎𝟎 𝐤𝐦. 
б) Нека осветеността върху Земята бъде 𝐸. Пълният поток светлина върху Земята ще бъде 𝐸𝜋𝑅𝐸

2, 
където 𝑅𝐸 е земният радиус. Част от потока светлина се поглъща в зависимост от албедото 𝐴: 
(1 − 𝐴)𝐸𝜋𝑅𝐸

2. Ако на Земята е установена равновесна температура 𝑇, то целият погълнат поток 
светлина ще се преизлъчва под формата на топлинно излъчване. Така (1 − 𝐴)𝐸𝜋𝑅𝐸

2 = 𝜎𝑇4𝑘𝜋𝑅𝐸
2, 

където 𝑘 е константа, определена от скоростта на въртене на Земята и други фактори. 
Заключаваме, че 𝐸 ∝ 𝑇4. Така ако осветеността от слънчевия образ при всяко от огледалата е 

𝐸𝑚, а слънчевата константа е 𝐸0, ще имаме 1 +
2𝐸𝑚

𝐸0
=
(𝑇+𝛥𝑇)4

𝑇4
. Търсим максимално 𝛥𝑇, така че ни 

трябва максимално 𝐸𝑚. Това се постига в случай (III), за който цялата ъглова площ на слънчевите 

образи се вижда в огледалата. Тогава 𝐸𝑚 =
𝐿

4𝜋(2𝑟)2
 и тъй като 𝐸0 =

𝐿

4𝜋𝑟2
, имаме 1,5 =

(𝑇+𝛥𝑇)4

𝑇4
. 

Отчитаме, че 0 K ⇔ −273,15° C, достигайки до 𝜟𝑻 = (√𝟏, 𝟓
𝟒

− 𝟏)𝑻 ≈ 𝟐𝟖, 𝟎 𝐊.  

в) Максималното 𝐸𝑚, постижимо в случай (I), е 𝐸𝑚 =
𝐿

4𝜋(2𝑟)2
×
𝜋𝜃⊙

′ (𝜃⊙
′ cos30°)

𝜋𝜃⊙
′2 = 𝐸0

cos30°

4
. На 

такава осветеност съответства 𝛥𝑇 = (√
4+√3

4

4

− 1)𝑇 ≈ 24,7 K. Става ясно, че 𝛥𝑇 = 26,0 K 

съответства на случай (II). Да намерим ъгловите площи от образите на Слънцето, видими в 
огледалата, е обективно трудна задача. За простота ще елиминираме като фактор различните 
разстояния до огледалата и до образите. Нека вместо да разглеждаме образите на Слънцето, 
разглеждаме “звезди” с радиус 𝑅⊙/2, чиито центрове съвпадат с тези на огледалата. Тяхната 
ъглова площ е същата, както на истинските слънчеви образи, така че преобразованието е 

еквивалентно. Осветеността от всяко от огледалата ще бъде 𝐸𝑚 =
𝐿

4𝜋(2𝑟)2
×

𝑆

𝜋(𝑅⊙/2)
2, където 𝑆 е 

сечението на площта на огледало и площта на диска на “звезда” (вече работим с линейни, а не 
ъглови площи). Занапред при всяко от огледалата ще работим с правоъгълна координатна 
система в равнина, перпендикулярна на зрителния лъч от Земята към огледалото, като (0,0) е 
общият център на “звездата” и огледалото. Оста Ox се разполага по голямата ос на елипсата на 
огледалото. 



Тогава уравнението на тази елипса е (
𝑥

𝑅
)
2

+ (
𝑦

𝑅 cos30°
)
2

= 1, т.е. 𝑥2 +
𝑦2

cos2 30°
= 𝑅2. От друга 

страна, уравнението на диска на “звездата” е 𝑥2 + 𝑦2 = (
𝑅⊙

2
)
2

. Да намерим координатите на 

пресечните точки на елипсата и диска (𝐴, 𝐵, 𝐶, 𝐷).  Имаме 
𝑦2

cos2 30°
− 𝑦2 = 𝑅2 − (

𝑅⊙

2
)
2

, откъдето 

𝑦 = ±√3(𝑅2 −
𝑅⊙
2

4
), откъдето 𝑥 = ±√𝑅⊙

2 − 3𝑅2. Разлагаме търсената от нас площ 𝑆 на две 

двойки сектори. 

∢𝐴𝑂𝐷 = 2arccos
√𝑅⊙

2 −3𝑅2

𝑅⊙/2
 и общата площ на зелените сектори е 𝑆𝑔 =

4arccos
√𝑅⊙
2 −3𝑅2

𝑅⊙/2

360°
𝜋 (

𝑅⊙

2
)
2

. За 

да намерим площта на червените сектори, нека “изправим” елипсата до окръжност.  
 

В получената окръжност площта на сектора при ∢𝐴′𝑂𝐵′ е 
𝑅

𝑅 cos30°
 пъти площта на сектора от 

елипсата при ∢𝐴𝑂𝐵 (лицата се променят с коефициент 
𝑎

𝑏
, където 𝑎 и 𝑏 са двете полуоси; 

например, 𝜋𝑎𝑏 става 𝜋𝑎2). Така площта на червените сектори е 𝑆𝑟 =
4 arcsin

√𝑅⊙
2 −3𝑅2

𝑅

360°
𝜋𝑅2 cos 30°. 

За 𝑆 = 𝑆𝑔 + 𝑆𝑟 получаваме 

𝑆 =

4 arccos
√𝑅⊙

2 − 3𝑅2

𝑅⊙/2

360°
𝜋 (
𝑅⊙
2
)
2

+
4arcsin

√𝑅⊙
2 − 3𝑅2

𝑅
360°

𝜋𝑅2 cos 30° 

Както казахме, 𝐸𝑚 =
𝐿

4𝜋(2𝑟)2
×

𝑆

𝜋(𝑅⊙/2)
2. Тогава за 𝐸𝑚 имаме  

𝐸𝑚 =
𝐿

4𝜋𝑟2
×

(

 
 
 
 arccos

2√𝑅⊙
2 − 3𝑅2

𝑅⊙
360°

+
arcsin

√𝑅⊙
2 − 3𝑅2

𝑅
360°

4𝑅2 cos 30°

𝑅⊙
2

)

 
 
 
 

  

За 𝛥𝑇 = 26,0° C получаваме, че съответства на 𝐸𝑚 ≈ 0,230𝐸0. Тоест търсим такова 𝑅, за което  



arccos
2√𝑅⊙

2 − 3𝑅2

𝑅⊙
360°

+
arcsin

√𝑅⊙
2 − 3𝑅2

𝑅
360°

4𝑅2 cos 30°

𝑅⊙
2 = 0,230 

Полагаме (
𝑅

𝑅⊙
)
2

= 𝑥, при което  
arccos2√1−3𝑥

360°
+
arcsin√1/𝑥−3

360°
2√3𝑥 = 0,230. Допустимите 

стойности за 𝑥 са 
1

4
≤ 𝑥 ≤

1

3
. Решаваме уравнението числено. При 𝑥 =

1

3,5
 лявата страна е 0,2373. 

При 𝑥 =
1

3,6
 лявата страна е 0,2336. При 𝑥 =

1

3,7
 лявата страна е 0,2297. Приемаме 𝑥 =

1

3,7
 за 

достатъчно точно решение. Тогава 𝑹 ≈ 𝟑𝟔𝟐𝟎𝟎𝟎 𝐤𝐦. Уравнението може да се реши и графично, 
което е по-времеемко. Графиката на 𝐸𝑚/𝐸0 в зависимост от 𝑥 може да се раздели на три клона, 
съответстващи на трите характерни случая: 

 

Пресичаме графиката с правата 
𝐸𝑚

𝐸0
= 0,230. Координатите на пресечната точка са (0,27, 0,23). 

Това отново съответства на 𝑥 =
1

3,7
 и дава същия резултат за 𝑅. 

 
17.4. Еднакви звезди. Ще ползваме индекс 1 за близката звезда и индекс 2 за далечната. 
Означаваме видимите звездни величини на звездите с 𝐵1, 𝐵2, 𝑉1 и 𝑉2. Без междузвездното 
поглъщане те биха били 𝐵01, 𝐵02, 𝑉01 и 𝑉02. Двете звезди имат еднакви физични свойства и 
съответно една и съща абсолютна звездна величина 𝑀𝑉 във филтър 𝑉. Разстоянията до звездите 
бележим с 𝑟1 и 𝑟2, а междузвездното поглъщане в 𝑉 на единица разстояние бележим с 𝑞. 
Имаме 𝑉1 − 𝑞𝑟1 = 𝑉01 и 𝑉2 − 𝑞𝑟2 = 𝑉02. Изваждаме двете равенства, откъдето 𝑉1 − 𝑉2 +
𝑞(𝑟2 − 𝑟1) = 𝑉01 − 𝑉02. Но 𝑀𝑉 = 𝑉01 − 5 lg 𝑟1[pc] + 5 и 𝑀𝑉 = 𝑉02 − 5 lg 𝑟2[pc] + 5, така че 𝑉01 −

𝑉02 = 5 lg (
𝑟1

𝑟2
). Дотук имаме 𝑉1 − 𝑉2 + 𝑞(𝑟2 − 𝑟1) = 5 lg (

𝑟1

𝑟2
), в което ще заместим с подходящ 

израз за 𝑞(𝑟2 − 𝑟1). За целта се възползваме от зависимостта 
𝐴𝑉

𝐸𝐵−𝑉
≈ 3, която дава 

𝑞𝑟1

(𝐵1−𝑉1)−(𝐵01−𝑉01)
≈ 3 и 

𝑞𝑟2

(𝐵2−𝑉2)−(𝐵02−𝑉02)
≈ 3. Достигаме до 𝑞(𝑟2 − 𝑟1) = 3((𝐵2 − 𝑉2) − (𝐵02 −

𝑉02) − (𝐵1 − 𝑉1) + (𝐵01 − 𝑉01)). По формулата на Погсън 𝐵01 − 𝐵02 = −5 lg (
𝑟2

𝑟1
) и 𝑉02 − 𝑉01 =

−5 lg (
𝑟1

𝑟2
) = 5 lg (

𝑟2

𝑟1
). Затова в дясната страна на израза за 𝑞(𝑟2 − 𝑟1) групите (𝐵01 − 𝐵02) и 

(𝑉02 − 𝑉01) се елиминират взаимно, при което остава 𝑞(𝑟2 − 𝑟1) = 3((𝐵2 − 𝑉2) − (𝐵1 − 𝑉1)). 

Затова 𝑉1 − 𝑉2 + 3((𝐵2 − 𝑉2) − (𝐵1 − 𝑉1)) = 5 lg (
𝑟1

𝑟2
). Така 3(𝐵2 − 𝐵1) − 4(𝑉2 − 𝑉1) = 5 lg (

𝑟1

𝑟2
). 

Заместваме 𝐵1 = 11
m, 𝐵2 = 17

m, 𝑉1 = 10
m, 𝑉2 = 15

m. Тогава 
𝒓𝟐

𝒓𝟏
≈ 𝟐, 𝟓𝟏. 

 
18.9. CMB. Означаваме сегашната температура на космическия микровълнов фон с 𝑇0. Ще 
изведем зависимостта между 𝑇0 и температурата 𝑇 в епоха 𝑧. CMB има АЧТ-спектър, като в 

сегашния момент дължината на вълната за максимален интензитет е 𝜆max0 =
𝑏

𝑇0
, където 𝑏 е 



константата на Вин. В епоха 𝑧 същата дължина на вълната е 𝜆maxz =
𝑏

𝑇
, като 𝑧 =

𝜆max0−𝜆maxz

𝜆maxz
=

1/𝑇0−1/T

1/T
=
𝑇−𝑇0

𝑇0
. Тогава 𝑇 = 𝑇0(1 + 𝑧) и остава да намерим стойността на 𝑧 за епохата на 

рекомбинация. Мащабният фактор в началото на стадия на вакуум-доминирана Вселена ще 

бъде 𝑎(𝑡𝑉) в израза 
𝑎(𝑡𝑉)

𝑎(𝑡0)
=
𝑒𝐻𝑡𝑉

𝑒𝐻𝑡0
= 𝑒𝐻(𝑡𝑉−𝑡0), където 𝐻 = 70

km

s∙Mpc
 е константата на Хъбъл и 𝑡0 =

1,38 × 1010 yr е възрастта на Вселената. Получаваме 𝑎(𝑡𝑉) = 0,751 и използваме това, за да 

намерим мащабния фактор при рекомбинацията 𝑎(𝑡𝑅): 
𝑎(𝑡𝑅)

𝑎(𝑡𝑉)
= (

𝑡𝑅

𝑡𝑉
)
2/3

, т.е. 𝑎(𝑡𝑅) = 8,57 × 10
−4. 

Връзката между 𝑎(𝑡𝑅) и епохата на рекомбинация 𝑧𝑅 е 𝑎(𝑡𝑅) =
1

1+𝑧𝑅
. Тогава 𝑧𝑅 = 1166 и 

търсената температура на CMB е 𝑻𝑹 ≈ 𝟑𝟏𝟖𝟎 𝐊. Реалната стойност на 𝑧𝑅 е 1089. Отклонението 
идва от това, че изразите за мащабен фактор в зависимост от времето, поместени в §18., са 
верни за Вселена, в която цялата плътност на енергията идва или само от лъчение, или само от 
материя, или само от тъмна енергия. Винаги една от тези компоненти взима превес откъм 
участие в общата плътност на енергията, но никога не участва само една компонента (в 
материално-доминирана Вселена няма само материя). Въпреки това методът, ползван за 
решаване на задачата тук, дава малко отклонение от истинската стойност на 𝑧𝑅. 
 
18.11. Ранна Вселена. а) Както мащабният фактор 𝑎(𝑡) характеризира размерите на Вселената, 
така мащабният фактор на трета степен 𝑎3(𝑡) характеризира нейния обем. Количеството 
материя във Вселената с времето се запазва, но обемът на Вселената се увеличава. Плътността 
за материята и плътността на енергията за материята са практически една и съща величина (𝐸 =
𝑚𝑐2!). Затова плътността на енергията за материята е пропорционална на 𝑎−3(𝑡). От връзката 

𝑎(𝑡) =
1

1+𝑧
 получаваме 𝜌m ∝ (1 + 𝑧)

3 и 𝒃 = 𝟑. 

Количеството лъчиста енергия в пространството не остава постоянно с времето, за разлика от 
количеството материя. Нека вземем фотон от това лъчение, имащ червено отместване 𝑧. 
Засичаме неговата енергия да е 𝐸 = ℎ𝜈, където 𝜈 e отчетената от нас честота на фотона, но 

“реалната” му енергия е 𝐸0 = ℎ𝜈0, където 𝜈0 е истинската честота на фотона. Обаче 𝑧 =
𝜈0−𝜈

𝜈
. 

Затова 𝑧 =
𝐸0/ℎ−𝐸/ℎ

𝐸/ℎ
, или 𝐸0 = 𝐸(1 + 𝑧). С времето енергията на лъчението намалява; отделно от 

това, Вселената увеличава обема си. Изменението в плътността на лъчистата енергия се 
определя и от двата фактора. От единия фактор имаме зависимост от (1 + 𝑧), а от другия 
фактор имаме зависимост от (1 + 𝑧)3 (вж. 𝜌m). Така 𝜌r ∝ (1 + 𝑧)

4 и 𝒂 = 𝟒. 
б) Означаваме критичната плътност с 𝜌c. В сегашния момент плътността на лъчистата енергия е 
𝜌r0 = 𝛺r0𝜌c и плътността на енергията на материята е 𝜌m0 = 𝛺m0𝜌c. В епоха 𝑧 двете са съответно 

𝜌r = 𝛺r0𝜌c(1 + 𝑧)
4 и 𝜌m0 = 𝛺m0𝜌c(1 + 𝑧)

3. Приравняваме ги за епоха 𝑧𝑒: 

𝛺r0𝜌c(1 + 𝑧𝑒)
4 = 𝛺m0𝜌c(1 + 𝑧𝑒)

3 

От това следва 1 + 𝑧𝑒 =
𝛺m0

𝛺r0
 и 𝒛𝒆 ≈ 𝟑𝟎𝟎𝟎.  

 
21.4. Слънце. Записваме уравнението за хидростатично равновесие в Слънцето на разстояние 𝑟 

от ядрото: −
𝑑𝑃

𝑑𝑟
=
𝛾𝑀(𝑟)𝜌

𝑟2
 (от §16.). Тук 𝜌 е константната слънчева плътност, 𝑀(𝑟) е масата, 

вписана в сфера с радиус 𝑟, а 
𝑑𝑃

𝑑𝑟
 е изменението на налягането в Слънцето с увеличаването на 

разстоянието от центъра на Слънцето. Минусът в лявата страна отчита, че налягането в 
Слънцето намалява с отдалечаването от центъра. Преобразуваме уравнението до – 𝑑𝑃 =
4

3
𝛾𝜋𝜌2𝑟𝑑𝑟. Означаваме налягането в центъра на Слънцето с 𝑃0 и радиуса на Слънцето с 𝑅. 

Тогава интегрираме двете страни по следния начин: 

∫ −𝑑𝑃
0

𝑃0

=
4

3
𝛾𝜋𝜌2∫ 𝑟𝑑𝑟

𝑅

0

 



Следва, че 𝑃0 =
2

3
𝛾𝜋𝜌2𝑅2. Уравнението на идеалния газ за центъра на Слънцето е 𝑃0  =

𝜌

𝜇
𝑅𝑔𝑇0, 

където 𝜇 е моларната маса на веществото в Слънцето, а 𝑅𝑔 e газовата константа. За 

температурата в центъра на Слънцето записахме 𝑇0, тъй като термоядрените реакции протичат 

именно в центъра на Слънцето. И така, 
2

3
𝛾𝜋𝜌2𝑅2 =

𝜌

𝜇
𝑅𝑔𝑇0, откъдето имаме 

2

3
𝛾𝜋𝜌𝑅2 =

𝑅𝑔𝑇0

𝜇
. Но 

4

3
𝜋𝑅3𝜌 = 𝑀 и 𝜌 =

3𝑀

4𝜋𝑅3
, откъдето 

𝛾𝑀

2𝑅
=
𝑅𝑔𝑇0

𝜇
. За радиуса на Слънцето получаваме 𝑅 =

𝛾𝑀𝜇

2𝑅𝑔𝑇0
. 

Според условието приемаме Слънцето за изградено изцяло от водород.  В ядрото на звездата 
веществото е йонизирано поради високите температури, така че моларната маса за водорода в 
ядрото не е 1 g/mol, а 0,5 g/mol, тъй като в един мол частици броим не атоми, а отделени 
протони и електрони (пада се една и съща маса на два пъти повече частици). И така, при 𝜇 =

0,5 g/mol имаме 𝑹 =
𝜸𝑴𝝁

𝟐𝑹𝒈𝑻𝟎
≈ 𝟒𝟎𝟎𝟎𝟎𝟎 𝐤𝐦. За намирането на плътността на Слънцето ползваме  

2

3
𝛾𝜋𝜌 (

𝛾𝑀𝜇

2𝑅𝑔𝑇0
)
2

=
𝑅𝑔𝑇0

𝜇
. Така 

1

6
𝛾3𝜋𝜌𝑀2 =

𝑅𝑔
3𝑇0
3

𝜇3
 и 𝝆 =

𝟔𝑹𝒈
𝟑𝑻𝟎
𝟑

𝝅𝜸𝟑𝑴𝟐𝝁𝟑
≈ 𝟕𝟒𝟎𝟎 𝐤𝐠/𝐦𝟑.  

 
21.8. Гравитационна вълна. а) Приемаме, че 𝑓 е степенна функция, т.е. 𝐼 ∝ 𝜔𝑥𝛾𝑦𝑐𝑧ℎ2. 
Размерностите от двете страни трябва да са еднакви. В лявата страна имаме W/m2 или J ∙ s−1 ∙

m−2. Но J ⇔ N ∙ m ⇔ kg ∙
m

s2
∙ m (това може да се провери с формулата за работа и с втория 

принцип на механиката). В основни мерни единици се получава, че размерността на лявата 
страна е kg ∙ s−3. Размерностите от дясната страна са s−1 за 𝜔, m ∙ s−1 за 𝑐 и m3 ∙ s−2 ∙ kg−1 за 𝛾 

(последното може да се провери с третия закон на Кеплер, 
𝑎3[m3]

𝑇2[s2]
=
𝛾[?]𝑀[kg]

4𝜋2
). Така дясната 

страна общо има размерност kg−y ∙ s−𝑥−2𝑦−𝑧 ∙ m3𝑦+𝑧. Това трябва да е еквивалентно на kg ∙ s−3. 

Тогава последователно намираме 𝑦 = −1, 𝑧 = 3 и 𝑥 = 2. Следователно 𝒇 = 𝒄𝒐𝒏𝒔𝒕 ∙
𝝎𝟐𝒄𝟑

𝜸
, като 

𝑐𝑜𝑛𝑠𝑡 тук показва безразмерна константа. 

б) От условието е ясно, че изразът 𝐾(𝛾, 𝑐)
𝐸𝑘

𝑅
 е безразмерен, защото ℎ също няма размерност. 

Взимаме 𝐾 за степенна функция, така че ℎ ∝ 𝛾𝑥𝑐𝑦
𝐸𝑘

𝑅
. Кинетичната енергия се дава в джаули, а 𝑅 

е в метри, така че размерността на 
𝐸𝑘

𝑅
 е J ∙ m−1⇔ N⇔ kg ∙ m ∙ s−2 . Както вече казахме, 

размерностите на 𝛾 и 𝑐 са съответно m3 ∙ s−2 ∙ kg−1 и m ∙ s−1. Тогава в дясната страна общата 
размерност е kg1−𝑥 ∙ s−2𝑥−𝑦−2 ∙ m3𝑥+𝑦+1. От това следва, че 1 − 𝑥 = 0, −2𝑥 − 𝑦 − 2 = 0 и 3𝑥 +

𝑦 + 1 = 0. Така 𝑥 = 1 и 𝑦 = −4, откъдето 𝑲 = 𝒄𝒐𝒏𝒔𝒕 ∙
𝜸

𝒄𝟒
. 

в) Ако наблюдател на разстояние 𝑅 от двойната система отчита гравитационни вълни с 
интензитет 𝐼, то мощността под формата на гравитационни вълни ще се дава с 𝑃 ∝ 𝐼𝑅2. Тогава 

𝑃 ∝
𝜔2𝑐3

𝛾
 ℎ2𝑅2 =

𝜔2𝑐3

𝛾
 𝐾2(𝛾, 𝑐)

𝐸𝑘
2

𝑅2
𝑅2 ∝

𝛾

𝑐5
𝜔2𝐸𝑘

2. Пълната механична енергия на системата от 

звезди е 𝐸 = −
𝛾𝑀1𝑀2

2𝑟
, а потенциалната енергия на системата е 𝐸𝑝 = −

𝛾𝑀1𝑀2

𝑟
. Тогава общата 

кинетична енергия за звездите е 𝐸𝑘 = 𝐸 − 𝐸𝑝 =
𝛾𝑀1𝑀2

2𝑟
. Дотук за мощността 𝑃 имаме 𝑃 ∝

𝛾3𝜔2(𝑀1𝑀2)
2

𝑐5𝑟2
 и остава да изразим 𝜔 чрез известните величини (𝜔 е кръговата честота на вълната и 

ще е пропорционална на ъгловата скорост на двойната система). Третият закон на Кеплер за 

двойната система изглежда така: 
𝑟3

𝑇2
=
𝛾(𝑀1+𝑀2)

4𝜋2
, като 𝑇 е орбиталният период за системата. От 

това следва 𝑇 = 2𝜋√
𝛾(𝑀1+𝑀2)

𝑟3
, така че 𝜔 =

2𝜋

𝑇
= √

𝛾(𝑀1+𝑀2)

𝑟3
. Заместваме този резултат в израза за 

мощността и получаваме 𝑷 = 𝒄𝒐𝒏𝒔𝒕 ∙
𝜸𝟒(𝑴𝟏𝑴𝟐)

𝟐(𝑴𝟏+𝑴𝟐)

𝒄𝟓𝒓𝟓
. 

г) Излъчваната мощност под формата на гравитационни вълни се взима от намаляващата пълна 

механична енергия на системата звезди. Това означава, че 𝑃 =
−𝑑𝐸

𝑑𝑡
=

𝑑

𝑑𝑡
(
𝛾𝑀1𝑀2

2𝑟
) = −

𝛾𝑀1𝑀2

2𝑟2
×
𝑑𝑟

𝑑𝑡
. 



Използваме, че 𝑃 ∝
𝛾4(𝑀1𝑀2)

2(𝑀1+𝑀2)

𝑐5𝑟5
, за да намерим, че 

𝑑𝑟

𝑑𝑡
∝ −

𝛾3𝑀1𝑀2(𝑀1+𝑀2)

𝑐5𝑟3
. След отчитане на 

безразмерния множител в условието, 
𝒅𝒓

𝒅𝒕
= −

𝟔𝟒𝜸𝟑𝑴𝟏𝑴𝟐(𝑴𝟏+𝑴𝟐)

𝟓𝒄𝟓𝒓𝟑
. 

д) Моментът, в който разстоянието между звездите е 𝑟0, взимаме за 𝑡 = 𝑡0. Аналогично, за 𝑟1 

моментът от време е 𝑡 = 𝑡1. Интегрираме уравнението 𝑟3𝑑𝑟 = −
64𝛾3𝑀1𝑀2(𝑀1+𝑀2)

5𝑐5
𝑑𝑡 така: 

∫ 𝑟3𝑑𝑟
𝑟1

𝑟0

= −
64𝛾3𝑀1𝑀2(𝑀1 +𝑀2)

5𝑐5
∫ 𝑑𝑡
𝑡1

𝑡0

 

𝑟1
4

4
−
𝑟0
4

4
= −

64𝛾3𝑀1𝑀2(𝑀1 +𝑀2)

5𝑐5
(𝑡1 − 𝑡0) 

По условие 𝑡1 − 𝑡0 = 𝑡d. Като резултат 𝒕𝐝 =
𝟓𝒄𝟓(𝒓𝟎

𝟒−𝒓𝟏
𝟒)

𝟐𝟓𝟔𝜸𝟑𝑴𝟏𝑴𝟐(𝑴𝟏+𝑴𝟐)
. 

e) Кръговата честота на гравитационните вълни e пропорционална, но не и равна на ъгловата 
скорост на двойната система. След половин обиколка двете компоненти заемат неразличими от 
гледна точка на гравитационното поле положения. Това означава, че кръговата честота на 
гравитационните вълни всъщност е два пъти ъгловата скорост на системата. По подразбиране 
стойностите 𝜈0 = 45 Hz и 𝜈𝐶 = 360 Hz в условието представляват линейни честоти на 
гравитационните вълни (връзката между линейна и кръгова честота e 2𝜋𝜈 = 𝜔, а връзката 

между линейна честота и период е 𝜈 =
1

𝑇
). От казаното дотук и третия закон на Кеплер следва, 

че 𝑟0 и 𝑟𝐶  се дават като 𝑟0 =
(2𝛾𝑀)1/3

(𝜋𝜈0)2/3
 и 𝑟𝐶 =

(2𝛾𝑀)1/3

(𝜋𝜈𝐶)2/3
. От предишната подточка ползваме, че 𝑟0

4 −

𝑟𝐶
4 =

512𝛾𝑀3

5𝑐5
𝑡 (като приложихме 𝑀1 = 𝑀2 = 𝑀). Коефициентът 512/5 в тази зависимост 

произлиза от коефициента 64/5 в условието на задачата, който отчита спомената чак сега 
особеност с периода на гравитационните вълни. Заместваме изразите за 𝑟0 и 𝑟𝐶  и с това 

намираме масата на всяка от черните дупки 𝑴 ≈ 𝟓, 𝟐 × 𝟏𝟎𝟑𝟏 𝐤𝐠. С тази стойност достигаме до 

𝒓𝟎 ≈ 𝟕, 𝟎 × 𝟏𝟎
𝟓 𝐦 и 𝒓𝑪 ≈ 𝟏, 𝟖 × 𝟏𝟎

𝟓 𝐦. 
 
21.9. Планета*. Записваме уравнението за хидростатично равновесие на разстояние 𝑟 от 

центъра на планетата: −
𝑑𝑃

𝑑𝑟
=
𝛾𝑀(𝑟)𝜌(𝑟)

𝑟2
 (от §16.). Тук 𝜌(𝑟) е плътността за това разстояние, 𝑀(𝑟) е 

масата, вписана в сфера с радиус 𝑟, а 
𝑑𝑃

𝑑𝑟
 е изменението на налягането в планетата с 

увеличаването на разстоянието от центъра й. Минусът в лявата страна отчита, че налягането 
намалява с отдалечаването от центъра. Заместваме в уравнението зависимостта 𝑃(𝑟) = 𝐾𝜌2(𝑟) 

от лявата страна, при което –
2𝐾𝜌(𝑟)𝑑𝜌

𝑑𝑟
=
𝛾𝑀(𝑟)𝜌(𝑟)

𝑟2
. Така 

𝑑𝜌

𝑑𝑟
= −

𝛾𝑀(𝑟)

2𝐾𝑟2
. Диференцирането на 𝑀(𝑟) 

по 𝑟 дава 
𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟). В това заместваме 𝑀(𝑟) = −

2𝐾

𝛾
× 𝑟2

𝑑𝜌

𝑑𝑟
, за да получим −

2𝐾

𝛾
×

𝑑

𝑑𝑟
(𝑟2

𝑑𝜌

𝑑𝑟
) = 4𝜋𝑟2𝜌(𝑟). Преобразуваме това до 

𝑑

𝑑𝑟
(𝑟2

𝑑𝜌

𝑑𝑟
) = −2𝜋

𝛾

𝐾
𝑟2𝜌(𝑟), откъдето стигаме до 

 2𝑟
𝑑𝜌

𝑑𝑟
+ 𝑟2

𝑑2𝜌

𝑑𝑟2
= −2𝜋

𝛾

𝐾
𝑟2𝜌(𝑟), тоест 2

𝑑𝜌

𝑑𝑟
+ 𝑟

𝑑2𝜌

𝑑𝑟2
= −2𝜋

𝛾

𝐾
𝑟𝜌(𝑟). Сега ще положим 𝑦 = 𝑟𝜌(𝑟). 

Имаме 
𝑑𝑦

𝑑𝑟
= 𝜌(𝑟) + 𝑟

𝑑𝜌

𝑑𝑟
 и 
𝑑2𝑦

𝑑𝑟2
=
𝑑𝜌

𝑑𝑟
+
𝑑𝜌

𝑑𝑟
+ 𝑟

𝑑2𝜌

𝑑𝑟2
. Затова 2𝑟

𝑑𝜌

𝑑𝑟
+ 𝑟2

𝑑2𝜌

𝑑𝑟2
= −2𝜋

𝛾

𝐾
𝑟2𝜌(𝑟) може да се 

запише като  
𝑑2𝑦

𝑑𝑟2
+ 2𝜋

𝛾

𝐾
𝑦 = 0. Това съвпада като формула с уравнението на хармоничен 

осцилатор 
𝑑2𝑥

𝑑𝑡2 
+ 𝜔2𝑥 = 0, като за планетата “кръговата честота” е 𝜔′ = √2𝜋

𝛾

𝐾
. Знаейки това, 

получаваме зависимостта 𝑦(𝑟) = 𝑏 sin(𝜔′𝑟), в която 𝑏 ≠ 0 е някаква константа. Тъй като 𝑦(𝑟) =

𝑟𝜌(𝑟), имаме 𝜌(𝑟) =
𝑏

𝑟
sin (√2𝜋

𝛾

𝐾
𝑟). На самата повърхност на планетата плътността намалява 

до нула (това е “границата” между планетата и останалото пространство). Това означава, че 

𝜌(𝑅) =
𝑏

𝑅
sin (√2𝜋

𝛾

𝐾
𝑅) = 0. Това е възможно единствено при sin (√2𝜋

𝛾

𝐾
𝑅) = 0. Затова 

√2𝜋
𝛾

𝐾
𝑅 = 𝜋, при което 𝑹 = √

𝝅

𝟐
√
𝑲

𝜸
. По принцип √2𝜋

𝛾

𝐾
𝑅 = 𝑘𝜋 при произволно естествено число 



𝑘 също е решение на уравнението, но физически смисъл има само 𝑘 = 1, тъй като при 𝑘 > 1 ще 
има някакво 𝑟0 < 𝑅, за което 𝜌(𝑟0) = 0. 
 

В израза 𝑅 = √
𝜋

2
√
𝐾

𝛾
 по никакъв начин не участва масата на планетата! Това означава, че в даден 

сферичен обем вещество, имащо като уравнение на състоянието 𝑃 = 𝐾𝜌2, можем да поместим 
каква да е маса. Този факт не е изненадващ, тъй като добавеното от нас вещество в обема ще 
има собствена маса и ще “затиска” веществото, което заема обема отначало. Ако разглеждахме 
вещество, което не може да се свива, при добавяне на маса радиусът щеше да се увеличава ∝

𝑀1/3. Несвиваемото вещество има уравнение на състоянието 𝑃 = 𝐾𝜌. 

Като общ случай да вземем уравнение на състоянието 𝑃 = 𝐾𝜌1+1/𝑛. В задачата имахме 𝑛 = 1, а 
за несвиваемо вещество 𝑛 = 0. Колкото е по-малко 𝑛, толкова е по-трудно да свием 
веществото. С други думи, колкото е по-малко 𝑛, толкова “по-твърдо” е веществото. Ясно е, че 
за 𝑛 < 1 добавянето на маса ще увеличава радиуса. При това 𝑛 = 1 е граничен случай, за който 
добавената маса достатъчно ще “затиска” останалото вещество, така че напълно да компенсира 
за какво да е нарастване на радиуса. Интересно е, че за 𝑛 > 1 при добавяне на маса радиусът 
трябва да намалява! В природата това се наблюдава при белите джуджета – колкото е по-
голяма масата на бяло джудже, толкова по-малък е неговият радиус. За малките бели джуджета 

тази зависимост е от вида 𝑅 ∝ 𝑀−1/3, което съответства на 𝑛 = 3/2. Щом като 𝑅 ∝ 𝑀−1/3, с 
добавяне на маса към бялото джудже плътността ще се увеличава. Когато масата се доближи до 
границата на Чандрасекар (от §16.), плътността става толкова голяма, че механизмите, които 
задържат белите джуджета цели, спират да работят. 
 
21.10. Инфлация*. а) За елемент с маса 𝑚 по границата на сферата записваме действащата сила 
веднъж с втория принцип на механиката и веднъж със закона на Нютон: 

𝑚
𝑑2𝑅

𝑑𝑡2
= −

𝛾𝑚𝑀𝑠
𝑅2(𝑡)

 

Тук 𝑀𝑠 е масата, вписана в сферата (тя не се мени с времето). Умножаваме двете страни на 

равенството по 𝑑𝑅, така че да получим 
𝑑𝑅

𝑑𝑡
𝑑 (

𝑑𝑅

𝑑𝑡
) = −

𝛾𝑀𝑠

𝑅2(𝑡)
𝑑𝑅. Интегрираме двете страни, като 

променливата в лявата страна е 
𝑑𝑅

𝑑𝑡
, а в дясната е 𝑑𝑅: ∫

𝑑𝑅

𝑑𝑡
𝑑 (

𝑑𝑅

𝑑𝑡
) = ∫−𝛾𝑀𝑠𝑅

−2(𝑡)𝑑𝑅. В резултат 

1

2
(
𝑑𝑅

𝑑𝑡
)
2

=
𝛾𝑀𝑠

𝑅(𝑡)
+ 𝐶, където 𝐶 е някаква интеграционна константа, идваща от неопределените 

интеграли. Ще използваме 𝑀𝑠 =
4

3
𝜋𝑅3(𝑡)𝜌(𝑡) и 

𝑑𝑅

𝑑𝑡
=
𝑑𝑎

𝑑𝑡
𝑅𝑠, замествайки ги в 

1

2
(
𝑑𝑅

𝑑𝑡
)
2

=
𝛾𝑀𝑠

𝑅(𝑡)
+ 𝐶. 

Имаме (
𝑑𝑎

𝑑𝑡
)
2

𝑅𝑠
2 =

2𝛾

𝑅𝑠𝑎(𝑡)
×
4

3
𝜋𝑅𝑠

3𝑎3(𝑡)𝜌(𝑡) + 2𝐶, откъдето 
1

𝑎2(𝑡)
(
𝑑𝑎

𝑑𝑡
)
2

=
8𝜋𝛾

3
𝜌(𝑡) +

2𝐶

𝑅𝑠
2𝑎2(𝑡)

. Така 

𝑨𝟏 =
𝟖𝝅𝜸

𝟑
. 

б) Нека вътрешната енергия на термодинамичната система в сферата е 𝐸, обемът на сферата е 
𝑉, работата на системата в сферата за период от време е 𝐴 и полученото количество топлина от 
системата е 𝑄. Тогава първият принцип на термодинамиката в диференциална форма изглежда 
така за системата в задачата: 

𝑑𝐴 + 𝑑𝐸 = 𝑑𝑄 
Тъй като разглеждаме адиабатен процес, имаме 𝑑𝑄 = 0. Отделно от това, 𝑑𝐴 = 𝑝𝑑𝑉. Тогава 
𝑑𝐸

𝑑𝑡
+ 𝑝

𝑑𝑉

𝑑𝑡
= 0. Но 

𝑑𝑉

𝑑𝑡
= 4𝜋𝑅𝑆

2𝑎2(𝑡)
𝑑𝑅

𝑑𝑡
= 4𝜋𝑅𝑆

3𝑎2(𝑡)
𝑑𝑎

𝑑𝑡
= 3

𝑉(𝑡)

𝑎3(𝑡)
𝑎2(𝑡)

𝑑𝑎

𝑑𝑡
= 3𝑉(𝑡) (

𝑎̇

𝑎
). Вътрешната 

енергия в сферата е 𝐸 = 𝜌(𝑡)𝑉(𝑡)𝑐2, т.е. 
𝑑𝐸

𝑑𝑡
= (

𝑑𝜌

𝑑𝑡
𝑉(𝑡) +

𝑑𝑉

𝑑𝑡
𝜌(𝑡)) 𝑐2 = (𝜌̇ + 3 (

𝑎̇

𝑎
) 𝜌(𝑡)) 𝑉(𝑡)𝑐2. 

Заместваме това в 
𝑑𝐸

𝑑𝑡
+ 𝑝

𝑑𝑉

𝑑𝑡
= 0, достигайки до (𝜌̇ + 3 (

𝑎̇

𝑎
) 𝜌(𝑡)) 𝑉(𝑡)𝑐2 + 3𝑝𝑉(𝑡) (

𝑎̇

𝑎
) = 0. Това 

означава, че 𝜌̇ + 3 (𝜌 +
𝑝

𝑐2
)
𝑎̇

𝑎
= 0, откъдето 𝑨𝟐 = 𝟑. 



в) По условие 
𝑝(𝑡)

𝑐2
= 𝑤𝜌(𝑡). Заместваме това във второто уравнение на Фридман, при което 𝜌̇ +

3𝜌(1 + 𝑤)
𝑎̇

𝑎
= 0. След съкращаване на 𝑑𝑡 това се преобразува до 

𝑑𝜌

𝜌
= −3(1 + 𝑤)

𝑑𝑎

𝑎
. 

Интегрираме от 𝜌0 и 𝑎0 до произволни стойности на плътността 𝜌 и мащабния фактор 𝑎 в даден 
момент от време: 

∫
𝑑𝜌

𝜌

𝜌

𝜌0

= −3(1 + 𝑤)∫
𝑑𝑎

𝑎

𝑎

𝑎0

 

В резултат ln
𝜌

𝜌0
= −3(1 + 𝑤) ln

𝑎

𝑎0
. Тогава 𝑒ln𝜌/𝜌0 = (𝑒ln𝑎/𝑎0)

−3(1+𝑤)
. Съответно 𝜌 = 𝜌0𝑎

−3(1+𝑤), 

защото по дефиниция 𝑎0 = 1. Стана ясно, че 𝜌 ∝ 𝑎−3(1+𝑤). (i) Когато имаме лъчиста енергия, 

плътността на енергията се задава с 𝜌𝑟 =
𝐸𝑟

𝑉
 (𝐸𝑟 е лъчистата енергия в обем 𝑉). Тъй като 

𝐸𝑟

𝑉
∝ 𝑎−4, 

е вярно 𝒘𝒓 =
𝟏

𝟑
 (вж. 18.12.). (ii) При нерелативистка материя с маса 𝑚0 в обем 𝑉 плътността на 

енергията е 𝜌𝑚 ≈
𝑚0𝑐

2

𝑉
∝ 𝑎−3, защото обемът се изменя с мащабния фактор на трета степен (вж. 

18.12.). Тогава 𝒘𝒎 = 𝟎. (iii) За константна плътност на енергията 𝜖𝛬 = 𝑐𝑜𝑛𝑠𝑡 на практика 𝜖𝛬 ∝ 𝑎
0, 

така че 𝒘𝜦 = −𝟏. 

г) При 𝑘 = 0 първото уравнение на Фридман става (
𝑎̇

𝑎
)
2

=
8𝜋𝛾

3
𝜌(𝑡) =

8𝜋𝛾

3
𝜌0𝑎

−3(1+𝑤).  

В (i) плътността 𝜌0 представлява плътност на лъчистата енергия 𝜌𝑟0, при което (
𝑎̇

𝑎
)
2

=
8𝜋𝛾

3
𝜌𝑟0𝑎

−4. 

Коренуваме до 𝑎
𝑑𝑎

𝑑𝑡
= √

8𝜋𝛾

3
𝜌𝑟0  и достигаме до 𝑎 𝑑𝑎 = √

8𝜋𝛾

3
𝜌𝑟0𝑑𝑡. В дясната страна 

интегрираме от време 0 след Големия взрив до момент от време 𝑡 след Големия взрив, а в 
лявата страна интегрираме съответно от мащабен фактор 0 до мащабен фактор 𝑎(𝑡). 

∫ 𝑎
𝑎(𝑡)

0

𝑑𝑎 = √
8𝜋𝛾

3
𝜌𝑟0∫ 𝑑𝑡

𝑡

0

 

С това достигаме до 𝑎(𝑡) = (2)1/2 (
8𝜋𝛾

3
𝜌𝑟0)

1/4

𝑡1/2. Сегашната стойност на константата на Хъбъл 

в рамките на (i) е 𝐻0 = √
8𝜋𝛾𝜌𝑟0

3
 (от (

𝑎̇

𝑎
)
2

=
8𝜋𝛾

3
𝜌𝑟0𝑎

−4). Тогава 𝒂(𝒕) = (𝟐𝑯𝟎)
𝟏/𝟐𝒕𝟏/𝟐. Този резултат 

илюстрира защо в лъчисто-доминирана Вселена 𝑎(𝑡) ∝ 𝑡1/2 (от §18.). 

В (ii) плътността 𝜌0 е плътност на нерелативистката материя 𝜌𝑚0, при което (
𝑎̇

𝑎
)
2

=
8𝜋𝛾

3
𝜌𝑚0𝑎

−3. 

Това евентуално се преобразува до 𝑎1/2 𝑑𝑎 = √
8𝜋𝛾

3
𝜌𝑚0𝑑𝑡. Остава да интегрираме двете страни, 

както направихме в (i): 

∫ 𝑎1/2
𝑎(𝑡)

0

𝑑𝑎 = √
8𝜋𝛾

3
𝜌𝑚0∫ 𝑑𝑡

𝑡

0

 

Резултатът е 𝑎3/2(𝑡) =
3

2
√
8𝜋𝛾

3
𝜌𝑚0𝑡. Тогава 𝑎(𝑡) = √3

2
√
8𝜋𝛾

3
𝜌𝑚0𝑡

3/2

, записано по друг начин, 

𝑎(𝑡) = (
3

2
)
2/3

(
8𝜋𝛾

3
𝜌𝑚0)

1/3

𝑡2/3. Но в рамките на (ii) 𝐻0 = √
8𝜋𝛾𝜌𝑚0

3
 и 𝒂(𝒕) = (

𝟑

𝟐
𝑯𝟎)

𝟐/𝟑

𝒕𝟐/𝟑. Това 

показва защо в материално доминирана Вселена 𝑎(𝑡) ∝ 𝑡2/3 (от §18.). 

В (iii) плътността 𝜌0 е константна плътност 𝜌𝛬, така че (
𝑎̇

𝑎
)
2

=
8𝜋𝛾

3
𝜌𝛬. Имаме 

1

𝑎
𝑑𝑎 = √

8𝜋𝛾

3
𝜌𝛬𝑑𝑡. 

Този път интегрираме от 𝑡0 до 𝑡 в дясната страна, а в лявата страна съответните граници ще са 
𝑎0 = 1 и 𝑎(𝑡) по условие: 

∫
1

𝑎

𝑎(𝑡)

𝑎0

𝑑𝑎 = √
8𝜋𝛾

3
𝜌𝛬∫ 𝑑𝑡

𝑡

𝑡0

 



Тогава ln (
𝑎(𝑡)

𝑎0
) = √

8𝜋𝛾

3
𝜌𝛬(𝑡 − 𝑡0), тоест 𝑎(𝑡) = 𝑎0𝑒

√
8𝜋𝛾

3
𝜌𝛬(𝑡−𝑡0)

. В рамките на (iii) е вярно 𝐻0 =

√
8𝜋𝛾𝜌𝛬

3
, така че 𝒂(𝒕) = 𝒆𝑯𝟎(𝒕−𝒕𝟎). В §18. за вакуум доминирана епоха е дадено 𝑎(𝑡) ∝ 𝑒𝐻0𝑡, което 

е еквивалентно. 

д) Условието, нужно за критична плътност на енергията, е 𝜌𝐶(𝑡) =
3𝐻2

8𝜋𝛾
. Първото уравнение на 

Фридман може да се запише като 𝐻2 =
8𝜋𝛾

3
𝛺(𝑡)𝜌𝐶(𝑡) −

𝑘𝑐2

𝑅0
2𝑎2(𝑡)

 (𝑅0 ⇔ 𝑅𝑠). Получаваме сега 

𝐻2(𝑡) = 𝐻2(𝑡)𝛺(𝑡) −
𝑘𝑐2

𝑅0
2𝑎2(𝑡)

. Така 𝒌 = (
𝑹𝟎

𝒄
)
𝟐

𝒂𝟐𝑯𝟐(𝜴 − 𝟏). 

е) Тъй като (
𝑅0

𝑐
)
2

𝑎2𝐻2 > 0, 𝒌 = +𝟏 съответства на 𝛀 > 𝟏, 𝒌 = −𝟏 съответства на 𝛀 < 𝟏 и 𝒌 = 𝟎 

съответства на 𝛀 = 𝟏. 

ж) От 𝑘 = (
𝑅0

𝑐
)
2

𝑎2𝐻2(Ω(𝑡) − 1) произтича 𝛺(𝑡) − 1 =
𝑘𝑐2

𝑎2𝐻2𝑅0
2 =

𝑘𝑐2

𝑅0
2 ×

1

𝑎2̇
. За Вселена, която е 

доминирана от лъчиста енергия или нерелативистка енергия, зависимостта на мащабния 

фактор от времето има вид 𝑎 = 𝑎0 (
𝑡

𝑡0
)
𝑝

, където 𝑝 < 1 (𝑝 =
1

2
 или 𝑝 =

2

3
). Диференцираме двете 

страни на това равенство по времето, откъдето 
𝑑𝑎

𝑑𝑡
=
𝑝𝑡𝑝−1

𝑡0
𝑝  и 

1

𝑎2̇
=
𝑡0
2𝑝

𝑝2
𝑡2(1−𝑝). Така 𝛺(𝑡) − 1 =

𝑘𝑐2𝑡0
2𝑝

𝑅0
2𝑝2

𝑡2(1−𝑝). Стойността на 𝛺(𝑡) − 1 в лъчисто доминирана Вселена е 𝛀𝐫(𝒕) − 𝟏 =
𝟒𝒌𝒄𝟐𝒕𝟎

𝑹𝟎
𝟐 𝒕, а в 

материално доминирана Вселена 𝛀𝐦(𝒕) − 𝟏 =
𝟗𝒌𝒄𝟐𝒕𝟎

𝟒/𝟑

𝟒𝑹𝟎
𝟐 𝒕𝟐/𝟑. 

з) Във вакуум доминирана Вселена 𝑎(𝑡) =
𝑒𝐻0𝑡

𝑒𝐻0𝑡0
. Диференцираме това по времето, 

разглеждайки го като функция от функция. Получаваме 
𝑑𝑎

𝑑𝑡
=

𝐻0

𝑒𝐻0𝑡0
𝑒𝐻0𝑡 = 𝐻0𝑒

𝐻0(𝑡−𝑡0). Затова 
1

𝑎2̇
 е 

𝐻0
−2𝑒2𝐻0(𝑡0−𝑡). Така 𝛺(𝑡) − 1 в случая е 𝛀𝚲(𝒕) − 𝟏 =

𝒌𝒄𝟐

𝑯𝟎
𝟐𝑹𝟎
𝟐 𝒆

𝟐𝑯𝟎(𝒕𝟎−𝒕). 

и) Периодът на инфлация е доминиран от константна плътност на енергията, така че за него 𝑤 =
−1 и 𝑝 = 𝑤𝑝𝑐2 = −𝑝𝑐2 (отрицателно налягане). Сега ще диференцираме по времето 𝑎̇2 =
8𝜋𝛾

3
𝜌𝑎2 −

𝑘𝑐2

𝑅0
2 , което е първото уравнение на Фридман. Резултатът от това диференциране е  

2𝑎̇𝑎̈ =
8𝜋𝛾

3
(𝜌̇𝑎2 + 2𝜌𝑎𝑎̇). Но по второто уравнение на Фридман 𝜌̇ = −3 (𝜌 +

𝑝

𝑐2
)
𝑎̇

𝑎
, откъдето 

𝑎̈

𝑎
=

−
4𝜋𝛾

3
(𝜌 +

3𝑝

𝑐2
). По време на инфлацията 𝑝 = −𝜌𝑐2 и 𝑎̈ =

8𝜋𝛾

3
𝑎𝜌 > 0 (разширение на Вселената с 

ускорение). Имаме 𝑎̈ =
𝑑(𝑎̇)

𝑑𝑡
=
𝑑(𝐻𝑎)

𝑑𝑡
> 0, а 

𝑑(𝐻𝑎)

𝑑𝑡
> 0 означава 

𝑑(𝐻𝑎)−1

𝑑𝑡
< 0 (намаляващ Хъблов 

радиус). 

й) Преобразуваме 
𝑑(𝑎𝐻)−1

𝑑𝑡
< 0 до −

𝑑(𝑎𝐻)

(𝑎𝐻)2𝑑𝑡
= −

𝑎̇𝐻+𝑎𝐻̇

(𝑎𝐻)2
= −

1

𝑎
(1 − 𝜖) < 0. Затова трябва 𝜖 < 1. 

к) Диференцираме по времето 𝐻2 =
1

3𝑀pl
2 (

1

2
𝜙2̇ + 𝑉) и представяме резултата като равенството 

2𝐻𝐻̇ =
1

3𝑀pl
2 (𝜙̇𝜙̈ + (

𝑑𝑉

𝑑𝜙
) 𝜙̇). Тук 

𝑑𝑉

𝑑𝜙
 е 𝑉′ = −(𝜙̈ + 3𝐻𝜙̇). Заместваме го, при което 𝐻̇ = −

𝜙̇2

2𝑀pl
2 . 

Тогава 𝜖 =
𝜙̇2

2𝑀pl
2 𝐻2

. В “slow-roll” прибилижението 𝜙̈ + 3𝐻𝜙̇ = −𝑉′ става 3𝐻𝜙̇ ≈ −𝑉′ и 𝐻2 =

1

3𝑀pl
2 (

1

2
𝜙2̇ + 𝑉) става 𝐻2 ≈

𝑉

3𝑀pl
2 . При тези условия заместваме в израза за 𝜖 получените сега 

изрази за 𝜙̇ и 𝐻2. В резултат 𝝐 ≈
𝑴𝐩𝐥
𝟐

𝟐
(
𝑽′

𝑽
)
𝟐

. Диференцирането на приближеното 3𝐻𝜙̇ = −𝑉′ ще 

даде 3𝐻̇𝜙̇ + 3𝐻𝜙̈ = −𝑉′′𝜙̇. Тогава от 3𝐻̇ + 3𝐻
𝜙̈

𝜙̇
= −𝑉′′ може да извлечем 

𝜙̈

𝜙̇
= −(

𝑉′′

3𝐻
+
𝐻̇

𝐻
). 

Заместваме това в 𝛿 = −
𝜙̈

𝐻𝜙̇
, при което 𝛿 =

𝑉′′

3𝐻2
+

𝐻̇

𝐻2
=

𝑉′′

3𝐻2
− 𝜖. Затова 𝜂𝑉 = 𝛿 + 𝜖 =

𝑉′′

3𝐻2
. От 𝐻2 ≈



𝑉

3𝑀pl
2  следва 𝜼𝑽 = 𝑴pl

𝟐 𝑽′′

𝑽
. Сега ползвамe 𝑑𝑁 = 𝐻𝑑𝑡 = (

𝐻

𝜙̇
)𝑑𝜙 ≈ −

1

𝑀pl
2 (

𝑉

𝑉′
) 𝑑𝜙. Следователно 

𝒅𝑵

𝒅𝝓
=

−
𝟏

𝑴pl
𝟐 (

𝑽

𝑽′
). 

л) Инфлацията приключва при 𝜖 = 1, където 𝜖 ≈
𝑀pl
2

2
(
𝑉′

𝑉
)
2

. По условие 𝑉(𝜙) = Λ4 (
𝜙

𝑀pl
)
𝑛

 и затова 

𝑉′ =
𝑑𝑉

𝑑𝜙
=

𝛬4

𝑀pl
𝑛 𝑛𝜙

𝑛−1. Това означава, че 
𝑉′

𝑉
=
𝑛

𝜙
. Когато 𝜙 = 𝜙end, имаме 

𝑀pl
2

2
(

𝑛

𝜙end
)
2

= 1 . Затова 

𝝓𝐞𝐧𝐝 =
√𝟐

𝟐
𝒏𝑴𝐩𝐥. 

м) Първо ще трябва да намерим 𝜂𝑉 и 𝜖 като функции на 𝑁 и 𝑛. Предварително намираме 𝑉′′ =
𝑑(𝑉′)

𝑑𝜙
=

𝛬4

𝑀pl
𝑛 𝑛(𝑛 − 1)𝜙

𝑛−2. От това следва, че 𝜂𝑉 = 𝑀pl
2 𝑛(𝑛 − 1)𝜙−2 = 𝑛(𝑛 − 1) (

𝑀pl

𝜙
)
2

. Отделно от 

това, 𝜖 =
𝑛2

2
(
𝑀pl

𝜙
)
2

 и 
𝑑𝑁

𝑑𝜙
= −

1

𝑛𝑀pl
2 𝜙. Получихме 𝑑𝑁 = −

1

𝑛𝑀pl
2 𝑛𝜙 𝑑𝜙. Ще интегрираме дясната 

страна от произволна стойност на 𝜙 до 𝜙end, а лявата страна ще интегрираме съответно от 𝑁(𝜙) 
до 0 (𝑁 = 0 в края на инфлацията). Това изглежда така: 

∫ 𝑑𝑁
0

𝑁(𝜙)

= −
1

𝑛𝑀pl
2 ∫ 𝜙 𝑑𝜙

𝜙end

𝜙

 

−𝑁(𝜙) = −
1

𝑛𝑀pl
2 (
𝜙end
2

2
−
𝜙2

2
) 

𝑁(𝜙) =
1

2𝑛𝑀pl
2 (

𝑛2

2𝑀pl
2 − 𝜙

2) 

𝑁(𝜙) = −
1

2𝑛
(
𝜙

𝑀pl
)

2

+
𝑛

4
 

Затова (
𝜙

𝑀pl
)
2

= −2𝑛 (𝑁 −
𝑛

4
) =

𝑛(𝑛−4𝑁)

2
. Заместваме това в 𝜂𝑉 = 𝑛(𝑛 − 1) (

𝑀pl

𝜙
)
2

, получавайки 

𝜂𝑉 =
2(𝑛−1)

𝑛−4𝑁
. Заместваме същото и в 𝜖 =

𝑛2

2
(
𝑀pl

𝜙
)
2

, получавайки 𝜖 =
𝑛

𝑛−4𝑁
. Сега от 𝑟 = 16𝜖 и 𝑛𝑠 =

1 + 2𝜂𝑉 − 6𝜖 получаваме 𝒓 =
𝟏𝟔𝒏

𝒏−𝟒𝑵
 и 𝒏𝒔 = 𝟏 −

𝟐(𝒏+𝟐)

𝒏−𝟒𝑵
. Искаме 𝑟 =

16𝑛

𝑛−240
< 0,12, тоест трябва 

15,88𝑛 < 28,8, тоест като условие имаме 𝑛 < 1,81. Още едно условие за 𝑛 получаваме от 𝑛𝑠 =

1 −
2(𝑛+2)

𝑛−240
< 0,974, тоест от 

2(𝑛+2)

𝑛−240
> 0,026. Преобразуваме това до 2𝑛 + 4 > 0,026𝑛 − 6,24 и е 

ясно, че трябва 𝑛 > −5,19. Но трябва също 𝑛𝑠 = 1 −
2(𝑛+2)

𝑛−240
> 0,962, тоест 

2(𝑛+2)

𝑛−240
< 0,038. 

Преобразуваме до 2𝑛 + 4 < 0,038𝑛 − 9,12, откъдето 𝑛 < −6,69. Системата неравенства 

{
𝑛 < 1,81
𝑛 > −5,19
𝑛 < −6,69

 

няма решения, т.е. няма 𝒏, отговарящо на наблюдателните данни. Това означава, че моделът 
за инфлация в задачата е грешен (стойността на 𝑁 също може да се измери наблюдателно). 
 



ПРИЛОЖЕНИЕ: ПИЩОВ 
 
Представени са в систематизиран вид основните формули и 
някои знания, нужни за решаването на задачите. На някои 
места се предполага запознатост със стандартните 
означения. 

 
питагорова теорема: 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐 

лице на кръг: 𝑺 = 𝝅𝑹𝟐 
периметър на окръжност: 𝑷 = 𝟐𝝅𝑹 

повърхнина на сфера: 𝑺 = 𝟒𝝅𝑹𝟐 

обем на кълбо: 𝑽 =
𝟒

𝟑
𝝅𝑹𝟑 

1 rad =
180

π
° =

180×60

𝜋

′
=

180×60×60

𝜋

′′
  

биномно приближение: (𝟏 ± 𝒙)𝒏 ≈ 𝟏 ± 𝒏𝒙 за 𝑥 близко до 0 
 

грав. сила м/у тела с маси 𝑚 и 𝑀: 𝑭 =
𝜸𝑴𝒎

𝒓𝟐  

грав. ускорение, създ. на разст. 𝑟 от тяло с маса 𝑀: 𝒈 =
𝜸𝑴

𝒓𝟐  

кин. енергия на тяло с маса 𝑚 и скорост 𝑣: 𝑬𝑲 =
𝒎𝒗𝟐

𝟐
 

грав. потенциална енергия за маси 𝑀, 𝑚 и разст. 𝑟: 𝑬𝑷 = −
𝜸𝑴𝒎

𝒓
 

механична енергия: 𝑬 = 𝑬𝑲 + 𝑬𝑷 =
𝒎𝒗𝟐

𝟐
−

𝜸𝑴𝒎

𝒓
; const при затворена система 

импулс: 𝒑 = 𝒎𝒗 

втори принцип на механиката: 𝑭 = 𝒎𝒂 = 𝒎
𝜟𝒗

𝜟𝒕
=

𝜟𝒑

𝜟𝒕
 

 
𝑎, 𝑏 – голяма/малка полуос, 𝑓 - фокусно разстояние 

ексцентрицитет: 𝒆 =
𝒇

𝒂
= √𝟏 −

𝒃𝟐

𝒂𝟐  

𝒓𝒑 = 𝒂(𝟏 − 𝒆)      𝒓𝒂 = 𝒂(𝟏 + 𝒆) (вж. чертежа) 

𝒓 =
𝒂(𝟏−𝒆𝟐)

𝟏−𝒆 𝐜𝐨𝐬 𝜽
 (вж. чертежа) 

II закон на Кеплер: радиус-векторът описва равни площи за равни интервали от време 

III закон на Кеплер: за тяло с орб. период 𝑇 по елипт. орбита около тяло с маса 𝑀 е вярно 
𝒂𝟑

𝑻𝟐 =
𝜸𝑴

𝟒𝝅𝟐 

съкратена форма: 
𝒂𝟑[𝐀𝐔]

𝑻𝟐[𝐲𝐫]
=  𝑴[𝐌⊙] перихелийна и афелийна скорост: 𝒗𝒑 = √

𝜸𝑴

𝒂

𝟏+𝒆

𝟏−𝒆
 и 𝒗𝒂 = √

𝜸𝑴

𝒂

𝟏−𝒆

𝟏+𝒆
 

механична енергия по елипса: 𝑬 = −
𝜸𝑴𝒎

𝟐𝒂
 скорост при разст. 𝑟 до централното тяло: 𝒗 = √𝜸𝑴 (

𝟐

𝒓
−

𝟏

𝒂
) 

орбитите могат да бъдат елиптични (вкл. кръгови) (𝐸 < 0), параболични (𝐸 = 0) и хиперболични (𝐸 > 0). 
момент на импулса на орбитиращото тяло: 𝑳 = 𝒎𝒗𝒓 𝐬𝐢𝐧 𝜶 (запазва се) 

кръгова скорост: 𝒗 = √
𝜸𝑴

𝒓
=

𝟐𝝅𝒓

𝑻
 параболична скорост: 𝒗 = √

𝟐𝜸𝑴

𝒓
 

 
връзка м/у линеен размер 𝑑, ъглов размер 𝛿 и разстояние 𝑟: 𝒅 = 𝜹[𝐫𝐚𝐝]𝒓 

връзка м/у пълна пространствена скорост 𝑣, лъчева скорост 𝑣𝑟 и танг. скорост 𝑣𝑡: 𝒗 = √𝒗𝒓
𝟐 + 𝒗𝒕

𝟐 

връзка м/у тангенциална скорост 𝑣𝑡, собствено движение 𝜇 и разстояние 𝑟: 𝒗[𝐦/𝐬] = 𝝁[𝐫𝐚𝐝/𝐬]𝒓[𝐦] 

 
 

планетни конфигурации: 
1,4,6 – редом до Сл. на небето 
2,3 – най-далеч от Сл. на небето и най-добра видимост 
5 – противоположно на Сл. по небето 
7,8 – на 90° от Слънцето на небето 
 

𝐬𝐢𝐧 𝜶 =
𝒂

𝒄
 

𝐜𝐨𝐬 𝜶 =
𝒃

𝒄
 

𝐭𝐠 𝜶 =
𝒂

𝒃
 

 
𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 = 𝟏 

𝐬𝐢𝐧(𝟗𝟎° − 𝒙) = 𝐜𝐨𝐬 𝒙 

𝐜𝐨𝐬(𝟗𝟎° − 𝒙) = 𝐬𝐢𝐧 𝒙 

𝐬𝐢𝐧(𝟏𝟖𝟎° − 𝒙) = 𝐬𝐢𝐧 𝒙 

𝐜𝐨𝐬(𝟏𝟖𝟎° − 𝒙) = − 𝐜𝐨𝐬 𝒙 

 

синусова и косинусова теорема: 
𝒂

𝐬𝐢𝐧 𝜶
=

𝒃

𝐬𝐢𝐧 𝜷
=

𝒄

𝐬𝐢𝐧 𝜸
 

𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 𝐜𝐨𝐬 𝜶 

 

𝐥𝐨𝐠𝒃(𝒙𝒚) = 𝐥𝐨𝐠𝒃 𝒙 + 𝐥𝐨𝐠𝒃 𝒚 

𝐥𝐨𝐠𝒃 (
𝒙

𝒚
) = 𝐥𝐨𝐠𝒃 𝒙 − 𝐥𝐨𝐠𝒃 𝒚 

𝐥𝐨𝐠𝒃 𝒙𝒅 = 𝒅 𝐥𝐨𝐠𝒃 𝒙 



𝟏

𝑻𝐬𝐲𝐧
=

𝟏

𝑻𝟏
±

𝟏

𝑻𝟐
 , където 𝑇1 и 𝑇2 са сидерични периоди, а 𝑇syn е синодичен период 

“−“ за еднакви посоки на движение, “+” за различни посоки 
 

период на хармоничен осцилатор с връщаща сила 𝑘𝑥 (𝑥 – отклонение) и маса 𝑚: 𝑻 = 𝟐𝝅√
𝒎

𝒌
 

ъглова скорост по окръжност: 𝝎 = 𝝎𝟎 + 𝜺𝒕         тук 𝜔0 e начална ъглова ск., 𝜀 e ъглово ускорение  
мом. на имп. на твърдо тяло спрямо оста му на въртене: 𝑳 = 𝑰𝝎 (𝐼 е инерчният момент спрямо тази ос) 

инерчен момент на кълбо с радиус 𝑅 и маса 𝑀: 𝑰 =
𝟐

𝟓
𝑴𝑹𝟐 

центростремителна сила при движение с ъгл. ск. 𝜔 по окръжност с радиус 𝑟: 𝑭𝒄 = 𝒎𝝎𝟐𝒓 
 
Слънцето по небето с течение на годината:    стандартни означения по небесната сфера:  

 
синусова теорема за сф. триъглъници: 

                     
𝐬𝐢𝐧 𝑨

𝐬𝐢𝐧 𝒂
=

𝐬𝐢𝐧 𝑩

𝐬𝐢𝐧 𝒃
=

𝐬𝐢𝐧 𝑪

𝐬𝐢𝐧 𝒄
 

косинусова теорема за сф. триъгълници: 
𝐜𝐨𝐬 𝒂 = 𝐜𝐨𝐬 𝒃 𝐜𝐨𝐬 𝒄 + 𝐬𝐢𝐧 𝒃 𝐬𝐢𝐧 𝒄 𝐜𝐨𝐬 𝑨  
ъглова площ на сф. триъгълник: 
𝝈[𝐬𝐫] = 𝑨 + 𝑩 + 𝑪 − 𝝅  
ъглова площ на сф. шапка, обхващаща ъгъл 𝜃: 
𝝈[𝐬𝐫] = 𝟐𝝅(𝟏 − 𝐜𝐨𝐬 𝜽)  
 

небесни координати: 
хоризонтални – височина ℎ, отчитаме я от мат. хор., 

и азимут 𝐴, отчитаме от изток на запад, започвайки 

от 𝑁 (геодезичен) или от 𝑆 (астрономически). 

екваториални – деклинация 𝛿, отчитаме от неб. 

екв.; часов ъгъл 𝑡, отчитаме по посока на въртенето 

на небесната сфера, започвайки от 𝑄′; ректасцензия 

𝛼, отчитаме обратнона въртенето на неб. сфера, 

започвайки от 𝛾. 

еклиптични – еклиптична ширина 𝛽, отчитаме от 

екл., и еклиптична дължина 𝜆, отчитаме по посока 

обратна на въртенето на неб. сф., започвайки от 𝛾. 

 
 

Съзвездие Време Общо 

Овен 19.04 – 13.05 25 дни 

Бик (Телец) 14.05 – 19.06 37 дни 

Близнаци 20.06 – 20.07 31 дни 

Рак 21.07 – 09.08 20 дни 

Лъв 10.08 – 15.09 37 дни 

Дева 16.09 – 30.10 45 дни 

Везни 31.10 – 22.11 23 дни 

Скорпион 23.11 – 29.11 7 дни 

Змиеносец 30.11 – 17.12 18 дни 

Стрелец 18.12 – 18.01 32 дни 

Козирог 19.01 – 15.02 28 дни 

Водолей 16.02 – 11.03 24 дни 

Риби 12.03 – 18.04 38 дни 

𝑂 – наблюдател 𝑁𝑆 – математически хоризонт  
𝑁 – север 𝐸 – изток 𝑊 – запад 𝑆 – юг 𝑍 – зенит 𝑍’ – надир 
𝑄𝑄’ – небесен екватор 𝑃/𝑃’ – северен/южен небесен полюс 
𝜀𝜀’ – еклиптика 𝛾/Ω – пролетна/есенна равноденствена точка 
𝜋/𝜋’ – северен/южен еклиптичен полюс 

 



Връзка между звездно време 𝑠, часов ъгъл на пролетната равноденствена точка 𝑡𝛾 и 

ректасцензията/часовия ъгъл 𝛼 и 𝑡 на произволна звезда: 𝒔 = 𝒕𝜸 = 𝜶 + 𝒕 

Връзка между средно местно слънчево време 𝑇⊙ и часов ъгъл на Слънцето 𝑡⊙: 𝑻⊙ = 𝒕⊙ + 𝟏𝟐 𝐡 
Местното звездно и местното слънчево време съвпадат, когато Слънцето е в 𝛺. Звездното време 
напредва с 3 m 56 s спрямо слънчевото всеки ден. 
Поправката между местно слънчево време и поясно време е 𝛥𝜆 [h], където 𝛥𝜆 е разликата м/у 
географските дължини на местния меридиан и централния меридиан за пояса. 
 

фаза (вж. схемата): 𝒇 =
𝑺𝟏

𝑺
=

𝒃

𝒂
=

𝟏+𝐜𝐨𝐬 𝝍

𝟐
 (𝜓 – фазов ъгъл)   

фази на Луната: 

 
 
 

 
 
 

честота на вълна с период 𝑇: 𝝂 =
𝟏

𝑻
 закон на Снелиус (вж. схемата): 

𝐬𝐢𝐧 𝜶

𝐬𝐢𝐧 𝜷
=

𝒏𝟐

𝒏𝟏
 

скорост на вълна с дължина 𝜆 и честота 𝜈: 𝒖 = 𝝀𝝂 

коефициент на пречупване в среда, в която скоростта на светлината е 𝑢: 𝒏 =
𝒄

𝒖
 

формула за слабо закривено оглед. и тънка леща: 
𝟏

𝒂
+

𝟏

𝒃
=

𝟏

𝒇
 (𝑎, 𝑏, 𝑓 - предметно/образно/фокусно разст.) 

увеличение на телескоп с фок. разст. 𝐹 на обектива и 𝑓 на окуляра: 𝒎 =
𝑭

𝒇
 

разделителна способност в дълж. на вълната 𝜆 при диаметър на наблюд. уред 𝐷: 𝜽[𝐫𝐚𝐝] =
𝟏,𝟐𝟐𝝀

𝑫
 

енергия на фотон с честота 𝜈: 𝑬 = 𝒉𝝂  
 

дължина на вълната на най-силно излъчване за АЧТ с темп. 𝑇: 𝝀max =
𝒃

𝑻
 

светимост на тяло с темп. на повърхността 𝑇 и повърхнина 𝑆: 𝑳 = 𝝈𝑻𝟒𝑺 (за звезда: 𝑳 = 𝝈𝑻𝟒𝟒𝝅𝑹𝟐) 

осветеност на разстояние 𝑟 от звезда със светимост 𝐿: 𝑬 =
𝑳

𝟒𝝅𝒓𝟐 

светлинно налягане върху огледално слънчево платно, получаващо осветеност 𝐴: 𝑷 =
𝟐𝑨

𝒄
 

 
Нека 𝑚𝑥 показва видима звездна величина във филтър 𝑥, 𝑀𝑥 показва абсолютна звездна величина в 𝑥, 
𝛷𝑥 показва поток в 𝑥, 𝐸 показва осветеност и 𝐿 показва светимост. 

формула на Погсън: 𝒎𝒙𝟏 − 𝒎𝒙𝟐 = −𝟐, 𝟓 𝐥𝐠
𝜱𝒙𝟏

𝜱𝒙𝟐
 

за болометрични видими звездни величини: 𝒎𝟏 − 𝒎𝟐 = −𝟐, 𝟓 𝐥𝐠
𝑬𝟏

𝑬𝟐
 

модул на разстоянието: 𝒎𝒙 − 𝑴𝒙 = −𝟓 + 𝟓 𝐥𝐠 𝒓[𝐩𝐜] 

за болометрични абсолютни звездни величини: 𝑴𝟏 − 𝑴𝟐 = −𝟐, 𝟓 𝐥𝐠
𝑳𝟏

𝑳𝟐
 

връзка между абс. зв. величина в 𝑉 и абс. бол. зв. величина: 𝑴𝑽 + 𝑩𝑪 = 𝑴 (тук 𝐵𝐶 е бол. поправка) 
 

масов дефект: 𝜟𝑬 = 𝜟𝒎𝒄𝟐 

радиус на Шварцшилд за черна дупка с маса 𝑀: 𝑹 =
𝟐𝜸𝑴

𝒄𝟐  

връзка маса-светимост за главната последователност: 𝑳[𝐋⊙] ≈ 𝑴[𝐌⊙]
𝟑,𝟓

 

време на главната последователност за звезда с маса 𝑀: 𝝉[𝐲𝐫] ≈ 𝟏𝟎𝟏𝟎𝑴[𝐌⊙]
−𝟐,𝟓

 

Денонощен хоризонтален паралакс 
на тяло на разстояние 𝑟 от планета с 
радиус 𝑅, гледано от планетата: 

𝐬𝐢𝐧 𝒑 =
𝑹

𝒓
 

Годишен паралакс на обект на 
разстояние 𝑟, гледано от Земята: 

𝝅[′′] =
𝟏

𝒓[𝐩𝐜]
 

Гледано от Земята, с течение на 
годината небесно тяло с екл. шир. 𝛽 
ще описва паралактична елипса с 
голяма полуос 𝜋 и малка полуос 
𝜋 sin 𝛽. 



въздушна маса за зенитно отстояние 𝑧: 𝑿 =
𝟏

𝐜𝐨𝐬 𝒛
 

връзка между поглъщане в 𝑉 и цветови ексцес за индекса 𝐵 − 𝑉: 
𝑨𝑽

𝑬𝑩−𝑽
≈ 𝟑 

 

червено/синьо отместване за измерена дълж. на вълната 𝜆 и лабораторна дълж. 𝜆0: 𝒛 =
𝝀−𝝀𝟎

𝝀𝟎
 

връзка между лъчева скорост 𝑣 и червено/синьо отместване 𝑧 (класическа): 
𝒗

𝒄
= 𝒛 

връзка между лъчева скорост 𝑣 и червено/синьо отместване 𝑧 (релативистка): 
𝒗

𝒄
=

(𝒛+𝟏)𝟐−𝟏

(𝒛+𝟏)𝟐+𝟏
 

увеличение в бол. видима звездна величина поради червеното отместване: 𝜟𝒎 = 𝟐, 𝟓 𝐥𝐠(𝟏 + 𝒛) 
закон на Хъбъл при обект с лъчева скорост 𝑣 на разстояние 𝑟: 𝒗 = 𝑯𝒓 

Хъблова възраст на Вселената: 𝒕𝑯 =
𝟏

𝑯
    критична плътност/плътност на енергията: 𝝆𝑪 =

𝟑𝑯𝟐

𝟖𝝅𝜸
 / 𝝆𝑪𝑬 =

𝟑𝑯𝟐𝒄𝟐

𝟖𝝅𝜸
 

параметър на плътността за плътност на енергията 𝜌𝐸: 𝜴 =
𝝆𝑬

𝝆𝑪𝑬
          мащабен фактор спрямо 𝑧: 𝒂(𝒕) =

𝟏

𝟏+𝒛
 

промяна на мащабния фактор с времето: 𝒂 ∝ 𝒕𝟏/𝟐, 𝒂 ∝ 𝒕𝟐/𝟑 и 𝑎 ∝ 𝒆𝑯𝟎𝒕 за лъчисто-доминирана, 
материално-доминирана и вакуум-доминирана Вселена 
 
за идеален газ с налягане 𝑃, обем 𝑉, температура 

𝑇 и брой молове 𝑛 е изпълнено: 
𝑷𝑽

𝑻
= 𝒏𝑹 

(при плътност 𝜌 и моларна маса 𝜇: 𝑷 =
𝝆𝑹𝑻

𝝁
) 

(при концентрация 𝑛𝑉: 𝑷 = 𝒏𝑽𝒌𝑻) 
средна квадратична скорост на постъпателно 
топлинно движение при температура 𝑇 на частици 

с моларна маса 𝜇: 𝒗 = √
𝟑𝑹𝑻

𝝁
 

 
при кръгови орбити в двойна система: 

𝑴𝟏𝒓𝟏 = 𝑴𝟐𝒓𝟐 ; 
𝒗𝟏

𝒓𝟏
=

𝒗𝟐

𝒓𝟐
 ; 𝑴𝟏𝒗𝟏 = 𝑴𝟐𝒗𝟐 

при елиптични орбити в двойна система: 
𝑴𝟏𝒓𝟏 = 𝑴𝟐𝒓𝟐 

в двойни системи може да се премине в 
относителна орбита, за която са валидни законите 
на Кеплер (вж. чертежа). 
 
 
 
 
 
 



ПРИЛОЖЕНИЕ:	
  НАБЛЮДАТЕЛНИ	
  ЗАДАЧИ	
  
	
  
Тук	
  е	
  приведена	
  информацията,	
  върху	
  която	
  се	
  съставят	
  повечето	
  наблюдателни	
  задачи	
  за	
  
подборния	
  кръг	
  и	
  за	
  международните	
  олимпиади.	
  Имайте	
  предвид,	
  че	
  наблюдателните	
  
турове	
  могат	
  да	
  представляват	
  и	
  работа	
  по	
  звездни	
  карти,	
  когато	
  небето	
  не	
  е	
  ясно.	
  
	
  
88-­‐те	
  съзвездия	
  
	
  
	
  
	
  

	
  
	
  

име	
  (български)	
   име	
  (латински)	
   абревиатура	
   име	
  (български)	
   име	
  (латински)	
   абревиатура	
  
Андромеда	
   Andromeda	
   And	
   Малка	
  мечка	
   Ursa	
  Minor	
   UMi	
  
Бик	
   Taurus	
   Tau	
   Малко	
  куче	
   Canis	
  Minor	
   CMi	
  
Близнаци	
   Gemini	
   Gem	
   Малък	
  лъв	
   Leo	
  Minor	
   LMi	
  
Везни	
   Libra	
   Lib	
   Маса	
   Mensa	
   Men	
  
Водна	
  змия	
   Hydrus	
   Hyi	
   Микроскоп	
   Microscopium	
   Mic	
  
Водолей	
   Aquarius	
   Aqr	
   Мрежичка	
   Reticulum	
   Ret	
  
Воловар	
   Bootes	
   Boo	
   Муха	
   Musca	
   Mus	
  
Вълк	
   Lupus	
   Lup	
   Овен	
   Aries	
   Ari	
  
Гарван	
   Corvus	
   Crv	
   Октант	
   Octans	
   Oct	
  
Голяма	
  мечка	
   Ursa	
  Major	
   UMa	
   Орел	
   Aquila	
   Aql	
  
Голямо	
  куче	
   Canis	
  Major	
   CMa	
   Орион	
   Orion	
   Ori	
  
Гущер	
   Lacerta	
   Lac	
   Паун	
   Pavo	
   Pav	
  
Гълъб	
   Columba	
   Col	
   Пегас	
   Pegasus	
   Peg	
  
Дева	
   Virgo	
   Vir	
   Пергел	
   Circinus	
   Cir	
  
Делфин	
   Delphinus	
   Del	
   Персей	
   Perseus	
   Per	
  
Длето	
   Caelum	
   Cae	
   Пещ	
   Fornax	
   For	
  
Дракон	
   Draco	
   Dra	
   Помпа	
   Antlia	
   Ant	
  
Еднорог	
   Monoceros	
   Mon	
   Райска	
  птица	
   Apus	
   Aps	
  
Еридан	
   Eridanus	
   Eri	
   Рак	
   Cancer	
   Cnc	
  
Жерав	
   Grus	
   Gru	
   Риби	
   Pisces	
   Psc	
  
Жертвеник	
   Ara	
   Ara	
   Рис	
   Lynx	
   Lyn	
  
Живописец	
   Pictor	
   Pic	
   Северна	
  корона	
   Corona	
  Borealis	
   CrB	
  
Жираф	
   Camelopardalis	
   Cam	
   Секстант	
   Sextans	
   Sex	
  
Жребче	
   Equuleus	
   Equ	
   Скорпион	
   Scorpius	
   Sco	
  
Заек	
   Lepus	
   Lep	
   Скулптор	
   Sculptor	
   Scl	
  
Златна	
  рибка	
   Dorado	
   Dor	
   Стрела	
   Sagitta	
   Sge	
  
Змиеносец	
   Ophiuchus	
   Oph	
   Стрелец	
   Sagittarius	
   Sgr	
  
Змия	
   Serpens	
   Ser	
   Телескоп	
   Telescopium	
   Tel	
  
Индианец	
   Indus	
   Ind	
   Триъгълник	
   Triangulum	
   Tri	
  
Касиопея	
   Cassiopeia	
   Cas	
   Тукан	
   Tucana	
   Tuc	
  
Кил	
   Carina	
   Car	
   Феникс	
   Phoenix	
   Phe	
  
Кит	
   Cetus	
   Cet	
   Хамелеон	
   Chamaeleon	
   Cha	
  
Козирог	
   Capricornus	
   Cap	
   Херкулес	
   Hercules	
   Her	
  
Колар	
   Auriga	
   Aur	
   Хидра	
   Hydra	
   Hya	
  
Компас	
   Pyxis	
   Pyx	
   Центавър	
   Centaurus	
   Cen	
  
Корабни	
  платна	
   Vela	
   Vel	
   Цефей	
   Cepheus	
   Cep	
  
Косите	
  на	
  Вероника	
   Coma	
  Berenices	
   Com	
   Часовник	
   Horologium	
   Hor	
  
Кърма	
   Puppis	
   Pup	
   Чаша	
   Crater	
   Crt	
  
Лебед	
   Cygnus	
   Cyg	
   Щит	
   Scutum	
   Sct	
  
Летяща	
  риба	
   Volans	
   Vol	
   Ъгломер	
   Norma	
   Nor	
  
Лира	
   Lyra	
   Lyr	
   Южен	
  кръст	
   Crux	
   Cru	
  
Лисичка	
   Vulpecula	
   Vul	
   Южен	
  триъгълник	
   Triangulum	
  Australe	
   TrA	
  
Ловджийски	
  кучета	
   Canes	
  Venatici	
   CVn	
   Южна	
  корона	
   Corona	
  Australis	
   CrA	
  
Лъв	
   Leo	
   Leo	
   Южна	
  риба	
   Piscis	
  Austrinus	
   PsA	
  



имена	
  на	
  звезди	
  и	
  очертания	
  на	
  съзвездия	
  
	
  
Използваните	
  тук	
  звездни	
  карти	
  показват	
  небето	
  за	
  нашите	
  географски	
  ширини.	
  Понякога	
  
международните	
  олимпиади	
  се	
  провеждат	
  значително	
  по	
  на	
  юг	
  и	
  се	
  налага	
  изучаването	
  на	
  
южното	
  небе.	
  Препоръчваме	
  програмата	
  Stellarium	
  за	
  допълнителна	
  подготовка	
  в	
  тази	
  връзка.	
  	
  
	
  
Очертанията	
  на	
  съзвездията	
  са	
  само	
  условни	
  и	
  имат	
  за	
  цел	
  да	
  помагат	
  за	
  разпознаването	
  на	
  
съзвездията	
  –	
  на	
  други	
  карти	
  може	
  да	
  се	
  срещат	
  в	
  различен	
  вид.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  



	
  



	
  



	
  



	
  



Допълнително	
  прилагаме	
  и	
  едромащабни	
  звездни	
  карти	
  на	
  области	
  по	
  небето,	
  видими	
  по	
  
нашите	
  ширини,	
  но	
  отсъстващи	
  в	
  по-­‐горните	
  карти.	
  	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  
определяне	
  на	
  координати	
  по	
  небето	
  
	
  
Тъй	
  като	
  в	
  много	
  задачи	
  се	
  изисква	
  определяне	
  на	
  екваториални	
  координати	
  на	
  обекти,	
  
препоръчително	
  е	
  да	
  се	
  запомнят:	
  

-­‐ точните	
  положения	
  на	
  двете	
  равноденствени	
  точки;	
  
-­‐ разположението	
  на	
  небесния	
  екватор;	
  
-­‐ приблизително	
  ректасцензиите	
  и	
  деклинациите	
  на	
  някои	
  звезди,	
  които	
  да	
  служат	
  за	
  

ориентир.	
  
За	
  оценките	
  на	
  еклиптични/галактични	
  координати	
  е	
  добре	
  да	
  се	
  знаят:	
  

-­‐ положенията	
  на	
  равноденствените	
  точки/галактичния	
  център;	
  
-­‐ местата	
  на	
  еклиптичните/галактичните	
  полюси;	
  
-­‐ разположението	
  на	
  еклиптиката/галактичния	
  екватор.	
  

За	
  определянето	
  на	
  координати	
  въобще	
  е	
  нужен	
  и	
  метод	
  за	
  измерване	
  на	
  ъгли	
  по	
  небето.	
  
Обикновено	
  това	
  се	
  прави,	
  като	
  се	
  сравнява	
  със	
  следните	
  ъглови	
  мерки	
  –	
  когато	
  човек	
  изпъне	
  
ръката	
  си	
  пред	
  себе	
  си:	
  

-­‐ ширината	
  на	
  кутрето	
  му	
  съответства	
  на	
  ъглов	
  размер	
  1°;	
  
-­‐ ширината	
  на	
  юмрука	
  му	
  съответства	
  на	
  ъгъл	
  10°;	
  
-­‐ максималното	
  разстояние	
  кутре-­‐показалец	
  съответства	
  на	
  15°;	
  
-­‐ максималното	
  разстояние	
  палец-­‐кутре	
  съответства	
  на	
  25°.	
  

Разбира	
  се,	
  тези	
  стойности	
  са	
  приблизителни	
  и	
  ако	
  се	
  използват	
  за	
  
определяне	
  на	
  много	
  големи	
  ъглови	
  разстояния,	
  има	
  значителна	
  грешка.	
  
В	
  тази	
  връзка,	
  някои	
  ориентири:	
  
𝛿 ≈ +60°	
  -­‐	
  Мусцида,	
  Рухбах,	
  Гианфар	
  
𝛿 ≈ +30°	
  -­‐	
  Матар,	
  Нусакан,	
  Моталах,	
  Елнат	
  
𝛿 ≈ 0°	
  (звезди	
  по	
  небесния	
  екватор)	
  -­‐	
  Садалмелик,	
  Минтака,	
  Хезе	
  
𝛿 ≈ −30°	
  -­‐	
  Фомалхаут,	
  Адара,	
  Каус	
  Медиа	
  
𝛼 ≈ 0h:	
  Маркаб	
  и	
  Алгениб	
  
𝛼 ≈ 6h:	
  Менкалинан	
  и	
  Бетелгейзе	
  
𝛼 ≈ 11h:	
  Дубхе	
  и	
  Мерак	
  
𝛼 ≈ 18h:	
  Етамин	
  и	
  Грумиум	
  



На	
  картата	
  по-­‐долу	
  е	
  нанесена	
  екваториална	
  координатна	
  мрежа,	
  а	
  също	
  така	
  и	
  еклиптиката.	
  

• Нанесете	
  небесния	
  екватор	
  и	
  еклиптиката	
  върху	
  картите	
  с	
  имената	
  на	
  звездите.	
  В	
  помощ	
  
на	
  това	
  върху	
  въпросните	
  карти	
  са	
  означени	
  равноденствените	
  точки	
  и	
  северният	
  
еклиптичен	
  полюс.	
  

• Потърсете	
  в	
  Интернет	
  разположението	
  на	
  галактичния	
  екватор	
  и	
  на	
  галактичните	
  
полюси.	
  Нанесете	
  ги	
  върху	
  картите	
  с	
  имената	
  на	
  звездите.	
  

	
  
някои	
  визуално	
  двойни	
  звезди	
  
	
  

звезда	
  
ъглов	
  размер	
  на	
  
голямата	
  полуос	
  
на	
  системата	
  [‘’]	
  

звезда	
  
ъглов	
  размер	
  на	
  
голямата	
  полуос	
  
на	
  системата	
  [‘’]	
  

𝛽	
  Cyg	
  (Албирео)*	
   62,9	
   𝛼	
  Her	
  (Расалгети)*	
   4,7	
  
𝛾	
  Del	
  (Денеб	
  Дулфим)	
   13,8	
   𝛾	
  Vir	
  (Порима)	
   3,7	
  
𝜂	
  Cas	
  (Ахирд)	
   12,0	
   𝜁	
  Ori	
  (Алнитак)	
   2,7	
  
𝜉	
  Cep	
  (Алкурхах)	
   11,7	
   𝛼	
  Psc	
  (Алриша)	
   2,7	
  
𝛼	
  Gem	
  (Кастор)*	
   7,4	
   𝜉	
  UMa	
  (Алула	
  Аустралис)*	
   2,5	
  
𝜁	
  Aqr	
  (Садалтагер)	
   5,1	
   𝛾	
  Leo	
  (Алгиеба)	
   2,5	
  

	
  



*	
  –	
  кратни	
  звезди	
  (с	
  повече	
  от	
  две	
  компоненти);	
  за	
  тях	
  данните	
  за	
  големите	
  полуоси	
  се	
  отнасят	
  
за	
  двете	
  най-­‐ярки	
  компоненти	
  
Особено	
  впечатляваща	
  е	
  четворната	
  𝜀	
  Lyr.	
  Отстоянието	
  между	
  двете	
  
“групи”	
  компоненти	
  е	
  около	
  3,5’	
  –	
  те	
  могат	
  да	
  се	
  разделят	
  с	
  просто	
  око	
  
при	
  много	
  добри	
  наблюдателни	
  условия.	
  
	
  
ярки	
  променливи	
  звезди	
  
	
  

звезда	
   тип	
  
видима	
  звездна	
  

величина	
  в	
  
максимум	
  

видима	
  звездна	
  
величина	
  в	
  
минимум	
  

амплитуда	
  
в	
  звездни	
  
величини	
  

период	
  [d]	
  

𝛽	
  Per	
  (Алгол)	
   Алгол	
   2,12	
   3,39	
   1,27	
   2,87	
  	
  
𝜆	
  Tau	
   Алгол	
   3,37	
   3,91	
   0,54	
   3,95	
  	
  
𝛽	
  Lyr	
  (Шелиак)	
   𝛽	
  Lyr	
   3,25	
   4,36	
   1,11	
   12,91	
  
𝜇!	
  Sco	
   𝛽	
  Lyr	
   2,94	
   3,22	
   0,28	
   1,45	
  	
  
𝜂	
  Cyg	
   цефеида	
   3,48	
   4,39	
   0,91	
   7,18	
  	
  
𝛿	
  Cep	
   цефеида	
   3,48	
   4,37	
   0,81	
   5,37	
  	
  
𝜁	
  Gem	
  (Мекбуда)	
   цефеида	
   3,62	
   4,18	
   0,56	
   10,15	
  	
  
𝜊	
  Cet	
  (Мира)	
   мирида	
   2,0	
   10,1	
   8,1	
   332	
  	
  
𝜒	
  Cyg	
  	
   мирида	
   3,3	
   14,2	
   10,9	
   408	
  	
  
	
  
най-­‐ярки	
  звезди	
  	
  
	
  

звезда	
   зв.	
  вел.	
   звезда	
   зв.	
  вел.	
   звезда	
   зв.	
  вел.	
  
Сириус	
  (𝛼	
  CMa)	
   -­‐1,46	
   Процион	
  (𝛼	
  CMi)	
   0,34	
   Антарес	
  (𝛼	
  Sco)	
   0,96*	
  
Канопус	
  (𝛼	
  Car)	
   -­‐0,74	
   Ахернар	
  (𝛼	
  Eri)	
   0,46*	
   Спика	
  (𝛼	
  Vir)	
   0,97*	
  
Толиман	
  (𝛼	
  Cen)	
   -­‐0,27	
   Бетелгейзе	
  (𝛼	
  Ori)	
   0,50*	
   Полукс	
  (𝛽	
  Gem)	
   1,14	
  
Арктур	
  (𝛼	
  Boo)	
   -­‐0,05	
   Хадар	
  (𝛽	
  Cen)	
   0,61	
   Фомалхаут	
  (𝛼	
  PsA)	
   1,16	
  
Вега	
  (𝛼	
  Lyr)	
   0,03*	
   Алтаир	
  (𝛼	
  Aql)	
   0,76	
   Денеб	
  (𝛼	
  Cyg)	
   1,25*	
  
Капела	
  (𝛼	
  Aur)	
   0,08*	
   Акрукс	
  (𝛼	
  Cru)	
   0,76	
   Бекрукс	
  (𝛽	
  Cru)	
   1,25*	
  
Ригел	
  (𝛽	
  Ori)	
   0,13*	
   Алдебаран	
  (𝛼	
  Tau)	
   0,86*	
   Регул	
  (𝛼	
  Leo)	
   1,39	
  

*	
  –	
  слаба	
  и/или	
  непериодична	
  променливост	
  
	
  
стандарти	
  за	
  звездна	
  величина	
  
	
  
m!	
   звезди	
  
≈2	
   Хамал,	
  Расалхаг,	
  Нунки	
  
≈2,5	
   Маркаб,	
  Гиенах,	
  Графиас	
  
≈3	
   Феркад,	
  Сегинус,	
  Мебсута	
  
≈3,5	
   Некар,	
  Алтарф,	
  Кафалджидма  
≈4	
   Тил,	
  Денеб	
  Дулфим,	
  Алхиба	
  
≈4,5	
   Аселус	
  Терциус,	
  Куям,	
  𝜄	
  Cas	
  
≈5	
   𝜂	
  UMi,	
  𝜄	
  CrB,	
  𝜑	
  Gem	
  
≈5,5	
   𝜊	
  CrB,	
  𝜎	
  Psc,	
  𝜊	
  Leo	
  
	
  
лунни	
  морета	
  и	
  кратери	
  
	
  
По	
  снимката	
  на	
  видимата	
  за	
  нас	
  
страна	
  на	
  Луната	
  са	
  означени	
  с	
  черно	
  
моретата	
  и	
  с	
  червено	
  –	
  кратерите.	
  
	
  



каталог	
  на	
  Месие	
  
	
  
Каталогът	
  на	
  Месие	
  съдържа	
  110	
  известни	
  астрономически	
  мъгляви	
  обекти,	
  включително	
  
разсеяни	
  и	
  кълбовидни	
  купове,	
  мъглявини,	
  галактики	
  и	
  т.н.	
  Запомнете	
  техните	
  положения	
  по	
  
небето	
  и	
  тип.	
  Потърсете	
  в	
  Интернет	
  техни	
  снимки.	
  	
  
	
  



ЗАДАЧИ	
  
	
  
при	
  ясно	
  небе	
  
	
  
На	
  олимпиадите	
  тези	
  задачи	
  се	
  правят	
  пред	
  изпитващ	
  и	
  за	
  тях	
  се	
  дава	
  много	
  малко	
  време	
  
(максимум	
  няколко	
  минути).	
  Отговорите	
  им	
  често	
  зависят	
  от	
  времето	
  на	
  наблюдение.	
  Ако	
  
изпълнявате	
  дадените	
  тук	
  задачи	
  за	
  упражнение	
  навън	
  (поне	
  тези,	
  които	
  е	
  възможно,	
  в	
  
зависимост	
  от	
  месеца),	
  запишете	
  датата	
  и	
  времето	
  си	
  на	
  наблюдение	
  и	
  след	
  това	
  проверете	
  
отговорите	
  си	
  на	
  програма	
  като	
  Stellarium.	
  	
  
	
  
а)	
  наблюдения	
  с	
  просто	
  око	
  
	
  
Задача	
  1.	
  Около	
  Делфин.	
  Коя	
  е	
  най-­‐ярката	
  звезда,	
  намираща	
  се	
  на	
  не	
  повече	
  от	
  24°	
  спрямо	
  𝜀	
  
Del?	
  Каква	
  е	
  видимата	
  й	
  звездна	
  величина?	
  (IAO2007-­‐αβ)	
  
	
  
Задача	
  2.	
  Ъгли	
  по	
  небето.	
  Определете	
  ъгловото	
  разстояние	
  между:	
  

• 	
  𝛼	
  Cyg	
  и	
  𝛽	
  Cyg	
  
• 𝛽	
  Dra	
  и	
  𝛾	
  Dra	
  
• 𝛼	
  Lyr	
  и	
  𝛼	
  Aql	
  (IAO2004-­‐αβ)	
  

	
  
Задача	
  3.	
  Околополюсни	
  съзвездия.	
  Очертайте	
  незалязващата	
  област	
  на	
  небето.	
  Покажете	
  
всички	
  незалязващи	
  съзвездия	
  и	
  напишете	
  латинските	
  им	
  названия.	
  (IAO2004-­‐αβ)	
  
	
  
Задача	
  4.	
  Ярки	
  звезди.	
  Отбележете	
  с	
  𝑋	
  в	
  таблицата	
  видимите	
  в	
  момента	
  за	
  вас	
  звезди.	
  
Покажете	
  ги	
  на	
  небето.	
  (IAO2006-­‐αβ)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Задача	
  5.	
  Съзвездия	
  на	
  север	
  и	
  юг.	
  Изредете	
  пет	
  съзвездия,	
  които	
  ще	
  бъдат	
  на	
  меридиана	
  на	
  
мястото	
  след	
  два	
  часа.	
  (IOAA2014)	
  
	
  
Задача	
  6.	
  Неизвестна	
  звезда.	
  Намерете	
  обекта,	
  отговарящ	
  на	
  следните	
  условия:	
  

-­‐ Обектът	
  е	
  втората	
  най-­‐ярка	
  звезда	
  в	
  своето	
  съзвездие;	
  
-­‐ Обектът	
  е	
  на	
  около	
  28°	
  от	
  𝛼	
  UMi;	
  
-­‐ Екваториалните	
  координати	
  на	
  обекта	
  са:	
  RA  11h,DEC+ 62°.	
  

Отговорете	
  на	
  следните	
  въпроси:	
  
• Какво	
  е	
  означението	
  по	
  Байер	
  (например	
  𝛽	
  Ori)	
  на	
  намерения	
  обект?	
  
• Какво	
  е	
  латинското	
  име	
  на	
  съзвездието,	
  в	
  което	
  е	
  обектът?	
  (IAO2013-­‐αβ)	
  

	
  
Задача	
  7.	
  Северният	
  кръст.	
  Нарисувайте	
  и	
  номерирайте	
  по	
  яркост	
  (1,	
  2,	
  ...)	
  осемте	
  “главни”	
  
звезди	
  на	
  съзвездието	
  Лебед.	
  (IAO2011-­‐αβ)	
  
	
  
Задача	
  8.	
  Координатни	
  системи.	
  Покажете	
  на	
  небето:	
  

• еклиптиката;	
  
• северния	
  еклиптичен	
  полюс;	
  
• небесния	
  екватор;	
  
• есенната	
  равноденствена	
  точка;	
  

звезда	
   видима?	
   звезда	
   видима?	
  
Арктур	
   	
   Денеб	
   	
  
Фомалхаут	
   	
   Процион	
   	
  
Толиман	
   	
   Антарес	
   	
  
Сириус	
   	
   Алтаир	
   	
  
Вега	
   	
   Спика	
   	
  



• галактичния	
  екватор;	
  
• галактичния	
  център;	
  
• северния	
  галактичен	
  полюс.	
  
	
  

Задача	
  9.	
  Скрит	
  Меркурий.	
  Оценете	
  зенитното	
  отстояние	
  на	
  Меркурий	
  (планетата	
  е	
  под	
  
хоризонта).	
  (IAO2012-­‐αβ)	
  
	
  
Задача	
  10.	
  Звездни	
  координати.	
  Оценете:	
  

• хоризонталните	
  координати	
  на	
  Шедир;	
  
• зенитното	
  отстояние	
  на	
  Алкор;	
  
• часовия	
  ъгъл	
  на	
  Маркаб;	
  
• еклиптичните	
  координати	
  на	
  Гиенах;	
  
• галактичната	
  ширина	
  на	
  Грумиум;	
  
• галактичната	
  дължина	
  на	
  Мирфак.	
  

	
  
Задача	
  11.	
  Липсваща	
  звезда.	
  На	
  звездната	
  карта	
  е	
  дадено	
  съзвездие,	
  като	
  една	
  звезда	
  е	
  
премахната.	
  Кое	
  е	
  съзвездието	
  и	
  коя	
  е	
  звездата?	
  (IAO2007-­‐αβ)	
  

Задача	
  12.	
  Пресичане.	
  Оценете	
  –	
  по	
  какво	
  универсално	
  време	
  в	
  днешния	
  ден	
  ще	
  се	
  пресекат	
  
небесният	
  екватор,	
  еклиптиката	
  и	
  меридианът	
  на	
  мястото	
  (известна	
  е	
  географската	
  дължина	
  на	
  
мястото	
  на	
  наблюдение)?	
  (IOAA2014)	
  
	
  
Задача	
  13.	
  Съзвездие	
  в	
  зенита.	
  

• Кое	
  съзвездие	
  ще	
  се	
  вижда	
  в	
  зенита	
  оттук	
  в	
  същия	
  момент	
  по	
  местно	
  звездно	
  време,	
  
както	
  сега,	
  но	
  след	
  7000	
  години?	
  

• Приблизително	
  след	
  кое	
  време	
  ще	
  се	
  намира	
  северният	
  еклиптичен	
  полюс	
  след	
  7000	
  
години?	
  (2012-­‐IV-­‐αβ)	
  

	
  
Задача	
  14.	
  От	
  лесно	
  към	
  трудно.	
  Посочете	
  на	
  небето	
  звездите	
  в	
  таблицата	
  и	
  запишете	
  
съзвездията,	
  в	
  които	
  се	
  намират	
  те.	
  
	
  

Звезда	
   Съзвездие	
   Звезда	
   Съзвездие	
  
Арктур	
   	
   Зубенелакраб	
   	
  
Алтаир	
   	
   Йилдун	
   	
  
Дубхе	
   	
   Алкалуропс	
   	
  
Албирео	
   	
   Сарин	
   	
  
Графиас	
   	
   Ротанев	
   	
  
Рухбах	
   	
   Киталфа	
   	
  
Сулафат	
   	
   Марфик	
   	
  



Ерай	
   	
   Алнасл	
   	
  
Виндемиатрикс	
   	
   Алсафи	
   	
  
Нусакан	
   	
   Мерга	
   	
  

	
  
б)	
  наблюдения	
  с	
  телескоп	
  
	
  
Задача	
  15.	
  Галилееви	
  луни.	
  Насочете	
  телескопа	
  към	
  Юпитер.	
  Направете	
  зарисовка	
  на	
  
положенията	
  на	
  луните	
  на	
  Юпитер	
  в	
  момента	
  на	
  наблюдение.	
  (IAO2011-­‐αβ)	
  
	
  
Задача	
  16.	
  Сатурн.	
  

• Насочете	
  телескопа	
  към	
  планетата	
  Сатурн.	
  
• Определете	
  неговите	
  часов	
  ъгъл,	
  ректасцензия	
  и	
  деклинация.	
  
• Как	
  ще	
  се	
  изменя	
  видимостта	
  на	
  Сатурн	
  в	
  следващите	
  няколко	
  месеца?	
  
• Посочете	
  на	
  небето	
  къде	
  приблизително	
  ще	
  се	
  намира	
  Сатурн	
  след	
  точно	
  една	
  година.	
  

	
  
Задача	
  17.	
  Двойният	
  куп.	
  Насочете	
  телескопа	
  към	
  ℎ	
  и	
  𝜒	
  Per:	
  𝛼 = 2h  22m	
  и	
  𝛿 = 57°10′.	
  
Кълбовидни	
  или	
  разсеяни	
  са	
  двата	
  наблюдавани	
  звездни	
  купа?	
  
	
  
Задача	
  18.	
  Луната.	
  

• Определете	
  фазата	
  на	
  Луната	
  на	
  око	
  (като	
  число).	
  
• 	
  След	
  колко	
  време	
  тя	
  ще	
  е	
  в	
  пълнолуние?	
  	
  
• В	
  кое	
  съзвездие	
  ще	
  се	
  намира	
  тогава?	
  	
  

Обяснете	
  разсъжденията,	
  чрез	
  които	
  достигнахте	
  до	
  вашите	
  отговори.	
  
Сега	
  намерете	
  Луната	
  в	
  телескопа.	
  

• Направете	
  на	
  предоставените	
  листи	
  схематична	
  зарисовка	
  на	
  Луната	
  така,	
  както	
  се	
  вижда	
  
с	
  телескопа.	
  Означете	
  приблизително	
  нейния	
  северен	
  полюс.	
  Не	
  е	
  нужно	
  зарисовката	
  да	
  
бъде	
  много	
  детайлна,	
  но	
  моретата,	
  например,	
  трябва	
  да	
  се	
  разграничават	
  ясно.	
  

• На	
  зарисовката	
  означете	
  четири	
  лунни	
  морета	
  и	
  два	
  кратера	
  по	
  ваш	
  избор.	
  
	
  
Задача	
  19.	
  Двойни	
  звезди.	
  На	
  дадената	
  звездна	
  карта	
  има	
  три	
  двойни	
  звезди:	
  𝛽	
  Cyg,	
  𝛿	
  Lyr	
  и	
  𝜀	
  
Lyr.	
  За	
  всяка	
  от	
  двойните	
  звезди	
  направете	
  следното:	
  
Насочете	
  телескопа	
  към	
  двойната	
  звезда.	
  Сравнете	
  звездното	
  небе,	
  което	
  виждате	
  в	
  телескопа,	
  
с	
  дадените	
  три	
  схеми.	
  Напишете	
  означенията	
  на	
  съответните	
  двойни	
  звезди	
  в	
  празните	
  клетки	
  
под	
  съответните	
  схеми.	
  Отбележете	
  посоката	
  север	
  на	
  всяка	
  схема	
  с	
  буквата	
  𝑁.	
  (IAO2013-­‐αβ)	
  
	
  



Задача	
  20.	
  Месие	
  маратон.	
  Насочете	
  
телескопа	
  към	
  M45,	
  M33,	
  M27,	
  M15,	
  M39,	
  
M13,	
  M51,	
  M31.	
  Колко	
  галактики	
  има	
  в	
  този	
  
списък?	
  А	
  колко	
  разсеяни	
  звездни	
  купа?	
  
	
  
Задача	
  21.	
  Месие	
  7.	
  

• Насочете	
  телескопа	
  си	
  към	
  NGC	
  6475	
  
(M7):	
  𝛼 = 17h  53m  54s,	
  𝛿 = −34°49′.	
  

• Отбележете	
  на	
  картата	
  на	
  M7	
  посоките	
  
север,	
  юг,	
  изток	
  и	
  запад.	
  

• Три	
  звезди	
  от	
  M7	
  липсват	
  на	
  картата.	
  
Отбележете	
  положенията	
  им	
  с	
  
кръстчета	
  (x).	
  

• Видимите	
  звездни	
  величини	
  на	
  
звездите	
  за	
  сравнение	
  A,	
  B	
  и	
  C	
  са	
  
съответно	
  7,6/7,5/5,6.	
  Оценете	
  
видимите	
  звездни	
  величини	
  на	
  
липсващите	
  звезди	
  и	
  ги	
  запишете	
  до	
  
кръстчетата.	
  

• Оценете	
  зрителното	
  поле	
  на	
  телескопа,	
  
използвайки	
  дадения	
  хронометър.	
  
Изложете	
  накратко	
  метода	
  си	
  и	
  
пресмятанията	
  си.	
  (IOAA2015)	
  

	
  
Задача	
  22.	
  Оптично	
  двойна	
  звезда.	
  Насочете	
  телескопа	
  си	
  
към	
  двойната	
  звезда	
  𝜋	
  Peg,	
  използвайки	
  10-­‐mm	
  окуляр	
  и	
  
приложената	
  звездна	
  карта.	
  Оценете	
  ъгловото	
  отстояние	
  
между	
  двете	
  звезди	
  в	
  дъгови	
  минути.	
  (IAO2014-­‐αβ)	
  

	
  
при	
  облачно	
  небе	
  
	
  
Задача	
  23.	
  Южно	
  небе.	
  	
  

• Къде	
  по	
  Земята	
  можем	
  да	
  видим	
  нощното	
  небе	
  на	
  дадената	
  звездна	
  карта?	
  
A.	
  в	
  Северното	
  полукълбо	
   B.	
  в	
  Южното	
  полукълбо	
   C.	
  на	
  Екватора	
   D.	
  и	
  A,	
  и	
  B	
  

• Отбележете	
  на	
  звездната	
  карта	
  със	
  съответните	
  латински	
  букви	
  съзвездията:	
  
A.	
  Crux	
  	
   B.	
  Eridanus	
   C.	
  Puppis	
   D.	
  Vela	
  

• Оградете	
  най-­‐ярката	
  звезда	
  на	
  звездната	
  карта.	
  (IAO2009-­‐αβ)	
  



	
  
Задача	
  24.	
  Скорпион.	
  Използвайки	
  звездната	
  
карта,	
  отговорете	
  на	
  следните	
  въпроси:	
  

• Каква	
  е	
  еклиптичната	
  ширина	
  на	
  
галактичния	
  център?	
  

• Положенията	
  на	
  четири	
  обекта	
  от	
  каталога	
  
на	
  Месие	
  са	
  означени	
  с	
  латински	
  букви.	
  Кои	
  
са	
  тези	
  обекти?	
  (IAO2016-­‐αβ)	
  

	
  
Задача	
  25.	
  Атракции	
  по	
  небето.	
  Дадени	
  са	
  
негативи	
  на	
  снимките	
  на	
  няколко	
  известни	
  обекта.	
  
Отбележете	
  в	
  празните	
  клетки	
  на	
  таблицата	
  
техните	
  означения.	
  (РАО2016-­‐V)	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



Задача	
  26.	
  Премахнати	
  звезди.	
  Всички	
  осем	
  звезди,	
  по-­‐ярки	
  от	
  втора	
  звездна	
  величина,	
  са	
  
премахнати	
  от	
  звездната	
  карта.	
  

• Върнете	
  ги	
  на	
  местата	
  им	
  и	
  запишете	
  техните	
  имена	
  (напр.	
  Deneb	
  или	
  𝛼	
  Cyg)	
  
• Кое	
  съзвездие	
  е	
  точно	
  в	
  югозападния	
  край	
  на	
  картата?	
  Запишете	
  неговото	
  стандартно	
  

трибуквено	
  означение.	
  (IAO2016-­‐αβ)	
  

	
  
Задача	
  27.	
  Касиопея.	
  На	
  картата	
  на	
  
съзвездието	
  Касиопея:	
  

• Отбележете	
  до	
  звездата	
  Нави	
  
нейното	
  Байерово	
  означение.	
  

• Отбележете	
  до	
  звездата	
  Шедир	
  
нейното	
  Байерово	
  означение.	
  

• Отбележете	
  до	
  звездата	
  Каф	
  
нейното	
  Байерово	
  означение.	
  

• Укажете	
  с	
  линия	
  положението	
  на	
  
галактичния	
  екватор.	
  

• Укажете	
  положението	
  на	
  
разсеяния	
  куп	
  M103.	
  

• Укажете	
  положението	
  на	
  
разсеяния	
  куп	
  M52.	
  

• Укажете	
  положението	
  на	
  
разсеяните	
  купове	
  𝜒	
  и	
  h	
  Персей.	
  

• Укажете	
  положението	
  на	
  
мъглявината	
  IC	
  1805	
  “Сърце”.	
  

• Оградете	
  с	
  кръгче	
  “O”	
  звездата	
  𝛿	
  Cas.	
  
• Оградете	
  с	
  триъгълник	
  “𝛥”	
  звездата	
  𝜀	
  Cas.	
  (РАО2016-­‐V)	
  

	
  
	
  



Задача	
  28.	
  Небето	
  над	
  град	
  Майкоп*.	
  Даден	
  е	
  видът	
  на	
  звездното	
  небе	
  в	
  19:50	
  по	
  местно	
  
време	
  (часовият	
  пояс	
  на	
  мястото	
  на	
  наблюдение	
  е	
  UT+3).	
  

• Определете	
  географската	
  ширина	
  на	
  мястото	
  на	
  наблюдение.	
  
• Определете	
  географската	
  дължина	
  на	
  мястото	
  на	
  наблюдение.	
  
• Определете	
  датата	
  на	
  наблюдение	
  (месец	
  и	
  ден).	
  
• Определете	
  звездното	
  време.	
  
• Укажете	
  положението	
  на	
  еклиптиката	
  и	
  го	
  означете	
  с	
  буквата	
  “e”.	
  
• Укажете	
  положението	
  на	
  небесния	
  екватор	
  и	
  го	
  означете	
  с	
  буквата	
  “Q”.	
  
• Укажете	
  с	
  кръст	
  “X”	
  положението	
  на	
  Полярната	
  звезда.	
  
• Укажете	
  посоките	
  север,	
  юг,	
  изток	
  и	
  запад	
  (“N”,	
  “S”,	
  “E”,	
  “W”).	
  
• Със	
  заградена	
  в	
  кръгче	
  буква	
  “Л”	
  означете	
  положението	
  на	
  Луната,	
  знаейки,	
  че	
  фазата	
  й	
  е	
  

0,92.	
  
• Укажете	
  положението	
  на	
  небесния	
  меридиан	
  и	
  го	
  означете	
  с	
  буквата	
  “М”.	
  
• Нарисувайте	
  очертанията	
  на	
  всички	
  известни	
  ви	
  съзвездия	
  и	
  запишете	
  до	
  тях	
  

стандартните	
  латински	
  трибуквени	
  означения	
  на	
  съзвездията.	
  
• Укажете	
  положението	
  на	
  галактичния	
  екватор	
  и	
  го	
  означете	
  с	
  буквата	
  “G”.	
  
• Оградете	
  с	
  кръгче	
  звездите	
  1.	
  Денеб	
  2.	
  Бенетнаш	
  3.	
  Алгол	
  4.	
  Ениф	
  5.	
  Садр	
  6.	
  Таразед	
  и	
  

поставете	
  до	
  тях	
  съответните	
  цифри.	
  
• Оградете	
  с	
  квадратче	
  звездите	
  7.	
  𝛼	
  Boo	
  8.	
  𝛼	
  Sco	
  9.	
  𝛾	
  Cas	
  10.	
  𝛿	
  Sco	
  11.	
  𝛽	
  Cap	
  12.	
  𝜀	
  Vir	
  и	
  

поставете	
  до	
  тях	
  съответните	
  цифри.	
  
• Определете	
  азимута	
  на	
  звездата	
  Спика.	
  
• Напишете	
  Байеровото	
  означение	
  на	
  звездата	
  с	
  хоризонтални	
  координати	
  𝐴 = 80,8°	
  

ℎ = 12,5°.	
  
• Напишете	
  Байеровото	
  означение	
  на	
  звездата	
  с	
  хоризонтални	
  координати	
  𝐴 = 318°	
  

ℎ = 34°.	
  
• С	
  триъгълник	
  “𝛥”	
  означете	
  положението	
  на	
  обекта	
  M4.	
  
• Със	
  звездичка	
  “*”	
  означете	
  положението	
  на	
  обекта	
  M51.	
  
• Със	
  знака	
  “@”	
  означете	
  положението	
  на	
  обекта	
  M31.	
  (РАО2016-­‐V)	
  



	
  
 
  
	
  
	
  
	
  
	
  



ПРИЛОЖЕНИЕ: СЪВЕТИ 
 
преди състезанието 
 
- За състезанието си пригответе часовник, линия (≈ 30 cm е най-удобно за практическите 

задачи), пергел, транспортир и научен калкулатор. 
 

- Позволяват се само непрограмируеми калкулатори. Научният калкулатор трябва да може да 
повдига на 𝑛-та степен и да намира 𝑛-ти корен. Той трябва да работи с тригонометрични 
функции и аркусфункции, а също и да логаритмува. Проучете как работи вашият калкулатор: 
прегледайте упътването и решавайте задачи с него вкъщи. Ако знаете да боравите с паметта 
на калкулатор, пресмятанията стават много по-бързо.  

 
- Запомнете през кои дати в кое съзвездие е Слънцето. Добре е това да става минути преди 

началото на състезанието, тъй като се забравя лесно.  
 
- Наспете се! 

 
по време на състезанието 
 
- Стойте до края! Няма вариант, в който това ще повлияе отрицателно на представянето ви. 

 
- На повечето олимпиади е възможно по време на състезанието да се задават въпроси към 

авторите на задачите. Не се притеснявайте да задавате въпроси. Ако в отговора на вашия 
въпрос би се съдържала подсказка към решението на задачата, журито може да откаже да 
отговори. Ако комисията реши да отговори на въпроса, отговорът ще бъде оповестен пред 
всички. 
 

- Номерата на задачите не съответстват на трудността им. 
 
- Задачите могат да се решават в произволен ред, но трябва да се обозначава коя част от 

написаното към коя задача се отнася. 
 
- Задачите трябва да се описват. Отговори без обосновка почти не носят точки. Давайте 

достатъчно ясни, но не непременно дълги обяснения – увличането в дълго описване само 
отнема време, а е важно да работите по всички задачи. Много по-добре е да имате прогрес 
по цялата тема, отколкото една перфектно решена задача и нищо друго. Първо решете 
задачите по същество (формули, краен отговор) и чак след това “украсявайте”. Дори и 
времето да свърши преди да сте описали добре решенията, комисията така или иначе ще се 
постарае да вникне в тях. 

 
- Ако изпитвате затруднения със задача, добре е да преминете към друга, която ще ви донесе 

по-лесни точки. След време се върнете на първоначалната задача. Отидете до тоалетна, 
изяжте много шоколад и пробвайте отново. 

 
- Някои задачи на състезание може да са аналогични на такива, които вече сте решавали. 

Това принципно не е лошо, но не се подвеждайте по повърхностни прилики – в задачата 
може да има уловка. 

 
- Пояснявайте смисъла на всяко буквено означение, което използвате, напр. “𝑅⊙ – радиус на 

Слънцето” (проверяващите не четат мисли). 
 



- Не изпускайте да напишете мерните единици на числените отговори. 
 
- Ако се колебаете дали написана от вас формула е вярна, проверете дали размерностите й 

от двете страни съвпадат (за пример, в третия закон на Кеплер и от двете страни трябва да 
имате m3 ∙ s−2). 

 
- След края на състезанието условията на задачите може да вземете със себе си, но ако сте 

работили върху някой от листите с условията, непременно трябва да го предадете. 
 
графики 
 
Много практически задачи се базират на представянето на данни в графичен вид. Тук са 
представени някои изисквания при чертането на графики върху милиметрова хартия. 
 
- Чертайте графиките с молив. Не натискайте с молива, за да не остават следи от триенето с 

гума, ако такова се наложи. 
 

- Ox лежи успоредно на дългата страна на листа. Прието е по Ox да стои времето, ако то е 
една от двете величини, които съпоставяме с помощта на графиката. 
 

- Графиката трябва да заема по-голямата част от листа милиметрова хартия. Изберете 
мащаба по двете оси, съобразявайки се с това.  

 
- Чертайте осите на графиката близо до края на милиметровата хартия. Оразмерете ги 

подходящо (не твърде нардяко или нагъсто). На всяка от осите със стрелка означете 
посоката, в която съответстващата величина расте. 

 
- След като са нанесени всички точки на графика, те трябва да се съединят с плавна крива, по 

която ще се извършват измерванията, нужни за задачата. Кривата може да минава и между 
точките – съответстващите им данни съдържат грешки и построяването на крива между 
точките като “средно положение” се явява коригиране на грешките на ръка. Друг вариант е 
да трябва да се прекара права линия между точките върху графика (напр. в 16.2.). 
Обикновено е ясно кое от двете се изисква в дадена задача. 

 
- Ако на един лист хартия трябва да се начертаят няколко отделни криви, добре е точките на 

различните криви да се означават с различни символи (X, +, O и т.н.). 
 
За пример по-долу е дадена кривата на лъчевата скорост към 20.5. От нея може да се измери 
половината на орбиталния период на системата звезда-планета, а също и амплитудата на 
изменение на лъчевата скорост на звездата. Формата на кривата е синусоидална, тоест 
орбитите в системата са кръгови. 
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